Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Riding an electron wave into the future of microchip fabrication: Computer simulation explores how intense plasma waves generate suprathermal electrons, which are critical to microchip fabrication

A plasma wave can give rise to a population of suprathermal electrons.

Credit: I.D. Kaganovich and D. Sydorenko
A plasma wave can give rise to a population of suprathermal electrons.

Credit: I.D. Kaganovich and D. Sydorenko

Abstract:
Advanced plasma-based etching is a key enabler of Moore's Law that observes that the number of transistors on integrated circuits doubles nearly every two years. It is the plasma's ability to reproduce fine patterns on silicon that makes this scaling possible and has made plasma sources ubiquitous in microchip manufacturing.

Riding an electron wave into the future of microchip fabrication: Computer simulation explores how intense plasma waves generate suprathermal electrons, which are critical to microchip fabrication

College Park, MD | Posted on November 13th, 2013

A groundbreaking fabrication technique, based on what is called a DC-augmented capacitively coupled plasma source, affords chip makers unprecedented control of the plasma. This process enables DC-electrode borne electron beams to reach and harden the surface of the mask that is used for printing the microchip circuits. More importantly, the presence of the beam creates a population of suprathermal electrons in the plasma, producing the plasma chemistry that is necessary to protect the mask. The energy of these electrons is greater than simple thermal heating could produce—hence the name "suprathermal." But how the beam electrons transform themselves into this suprathermal population has been a puzzle.

Now a computer simulation developed at the U.S. Department of Energy's Princeton

Plasma Physics Laboratory in collaboration with the University of Alberta has shed light on this transformation. The simulation reveals that the initial DC-electrode borne beam generates intense plasma waves that move through the plasma like ripples in water. And it is this beam-plasma instability that leads to the generation of the crucial suprathermal electrons.

Understanding the role these instabilities play provides a first step toward still-greater control of the plasma-surface interactions, and toward further increasing the number of transistors on integrated circuits. Insights from both numerical simulations and experiments related to beam-plasma instabilities thus portend the development of new plasma sources and the increasingly advanced chips that they fabricate.

Abstracts:
TO6.00005 Collisionless acceleration of plasma electrons by intense electron beam
Session: Low Temperature Plasma Science, Engineering and Technology
9:30 AM-11:06 AM, Thursday, November 14, 2013

####

For more information, please click here

Contacts:
Research Contacts:

I.D. Kaganovich:
(609) 243-3277


D. Sydorenko
University of Alberta
Edmonton, Canada

James Riordon

301-209-3238
American Physical Society

Copyright © American Physical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

Industrial

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Industrial Nanotech, Inc. Announces Certification for Use in Middle East for Buildings: Nansulate(R) Energy Saving Coatings to be used by Major Middle East Energy Company April 1st, 2014

Harper Government Announces Support for U of S Nanoscience Research: Uses for New Nanostructured Coatings Range from Biomedical to Oil Sand Sectors March 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE