Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Single-cell genome sequencing gets better: Most complete genome sequences from single E. coli cells and individual neurons from the human brain generated by new sequencing approach from UC San Diego bioengineers and colleagues

Bioengineers from the University of California, San Diego are leading the research team that has published a breakthrough single-cell genome sequencing technique that stands to improve our understanding of genomic diversity among cells from the same human brain. With the new approach, the researchers generated the most complete genome sequences published thus far from single E. coli cells and individual neurons from the human brain. The approach, called Microwell Displacement Amplification System, confines genome amplification to fluid-filled wells with a volume of just 12 nanoliters. This work is published in the journal Nature Biotechnology on November 10, 2013. An animated video illustrating the technique is available upon request.

Credit: UC San Diego Jacobs School of Engineering
Bioengineers from the University of California, San Diego are leading the research team that has published a breakthrough single-cell genome sequencing technique that stands to improve our understanding of genomic diversity among cells from the same human brain. With the new approach, the researchers generated the most complete genome sequences published thus far from single E. coli cells and individual neurons from the human brain. The approach, called Microwell Displacement Amplification System, confines genome amplification to fluid-filled wells with a volume of just 12 nanoliters. This work is published in the journal Nature Biotechnology on November 10, 2013. An animated video illustrating the technique is available upon request.

Credit: UC San Diego Jacobs School of Engineering

Abstract:
Researchers led by bioengineers at the University of California, San Diego have generated the most complete genome sequences from single E. coli cells and individual neurons from the human brain. The breakthrough comes from a new single-cell genome sequencing technique that confines genome amplification to fluid-filled wells with a volume of just 12 nanoliters.

Single-cell genome sequencing gets better: Most complete genome sequences from single E. coli cells and individual neurons from the human brain generated by new sequencing approach from UC San Diego bioengineers and colleagues

San Diego, CA | Posted on November 11th, 2013

The study is published in the journal Nature Biotechnology on November 10, 2013.

"Our preliminary data suggest that individual neurons from the same brain have different genetic compositions. This is a relatively new idea, and our approach will enable researchers to look at genomic differences between single cells with much finer detail," said Kun Zhang, a professor in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering and the corresponding author on the paper.

The researchers report that the genome sequences of single cells generated using the new approach exhibited comparatively little "amplification bias," which has been the most significant technological obstacle facing single-cell genome sequencing in the past decade. This bias refers to the fact that the amplification step is uneven, with different regions of a genome being copied different numbers of times. This imbalance complicates many downstream genomic analyses, including assembly of genomes from scratch and identifying DNA content variations among cells from the same individual.

Single-cell Genome Sequencing

Sequencing the genomes of single cells is of great interest to researchers working in many different fields. For example, probing the genetic make-up of individual cells would help researchers identify and understand a wide range of organisms that cannot be easily grown in the lab from the bacteria that live within our digestive tracts and on our skin, to the microscopic organisms that live in ocean water. Single-cell genetic studies are also being used to study cancer cells, stem cells and the human brain, which is made up of cells that increasingly appear to have significant genomic diversity.

"We now have the wonderful opportunity to take a higher-resolution look at genomes within single cells, extending our understanding of genomic mosaicism within the brain to the level of DNA sequence, which here revealed new somatic changes to the neuronal genome. This could provide new insights into the normal as well as abnormal brain, such as occurs in Alzheimer's and Parkinson's disease or Schizophrenia," said Jerold Chun, a co-author and Professor in the Dorris Neuroscience Center at The Scripps Research Institute.

For example, the new sequencing approach identified gains or loss of single copy DNA as small as 1 million base pairs, the highest resolution to date for single-cell sequencing approaches. Recent single-cell sequencing studies have used older techniques which can only decipher DNA copy changes that are at least three to six million base pairs.

Amplification in Nano-Scale Wells

The 12 nanoliter (nL) volume microwells in which amplification takes place are some of the smallest volume wells to be used in published protocols for single-cell genome sequencing.

"By reducing amplification reaction volumes 1000-fold to nanoliter levels in thousands of microwells, we increased the effective concentration of the template genome, leading to improved amplification uniformity and reduced DNA contamination," explained Jeff Gole, the first author on the paper. Gole worked on this project as a Ph.D. student in Kun Zhang's bioengineering lab at the UC San Diego Jacobs School of Engineering. Gole is now a Scientist at Good Start Genetics in Cambridge, Mass.

Compared to the most complete previously published single E. coli genome data set, the new approach recovered 50 percent more of the E. coli genome with 3 to 13-fold less sequencing data.

"The results demonstrate that MIDAS provides a much more efficient way to assemble whole bacterial genomes from single cells without culture," the authors write in the Nature Biotechnology paper.

Multidisciplinary Research

The genomics researchers collaborated with materials science graduate student Yu-Jui (Roger) Chiu on the microfabrication required to create the arrays of microwells. Chiu is working on his Ph.D. in the lab of UC San Diego electrical engineering professor Yu-Hwa Lo, who also directs the Nano3 Labs in UC San Diego's Qualcomm Institute, where microfabrication took place.

"This project would not have succeeded without the fabrication and instrumentation support available at the Jacobs School and the Qualcomm Institute," said Zhang. "We are very excited about our initial results as well as the possibility that researchers around the world will be able to use this approach in many different contexts."

###

Prof. Kun Zhang is the PI on an NIH-funded center dedicated to the analysis and visualization of RNA transcripts - a proxy for gene activity - from individual cells within the human brain.

This project was funded by US National Institutes of Health grants R01HG004876, R01GM097253, U01MH098977 and P50HG005550, and National Science Foundation grant OCE-1046368.

A patent application has been filed, and UC San Diego is seeking commercial partners to license and develop this innovation into useful products. For information, contact:

"Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells," in Nature Technology by: Jeff Gole (1), Athurva Gore (1), Andrew Richards (1), Yu-Jui Chiu (2), Ho-Lim Fung (1), Diane Bushman (3), Hsin-I Chiang (1,5), Jerold Chun (3), Yu-Hwa Lo (4), Kun Zhang (1)

(1) = Department of Bioengineering, Institute for Genomic Medicine and Institute of Engineering in Medicine, University of California, San Diego

(2) = Materials Science and Engineering Program, University of California, San Diego

(3) = Dorris Neuroscience Center, Molecular and Cellular Neuroscience Department, The Scripps Research Institute

(4) = Department of Electrical and Computer Engineering, University of California, San Diego

(5) = Present address: Department of Animal Science, National Chung Hsing University

####

For more information, please click here

Contacts:
Daniel Kane

858-534-3262

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Nanomedicine

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Patents/IP/Tech Transfer/Licensing

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

NEI Announces the Issuance of Multiple Patents on Self-Healing & Superhydrophobic Coatings June 30th, 2015

Solegear Further Strengthens its Product Development Team: New Hire Seeks to Create New, Disruptive, Sustainable Materials June 17th, 2015

High-tech nanofibres could help nutrients in food hit the spot June 17th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project