Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dyesol to Join SPECIFIC as an Industrial Partner

Abstract:
Dyesol has entered formal discussions to finalise the terms for its role as an Industrial Partner at the Sustainable Product Engineering Centre for Innovative Functional Industrial Coatings (SPECIFIC), South Wales. SPECIFIC is a £20 million, 5-year project, located at the Baglan Bay Innovation and Knowledge Centre and a powerful partnership that includes leading U.K. university groups such as Swansea, Imperial College, Bath, Bangor, Cardiff, Glyndwr and Strathclyde as well as multi-national companies, including BASF, Pilkington and Tata. SPECIFIC is considered a world leader in innovation and functionalising the building envelope for energy capture, storage and release.

Dyesol to Join SPECIFIC as an Industrial Partner

Queanbeyan, Australia | Posted on November 4th, 2013

With SPECIFIC, Dyesol will focus on Solid State DSC Electrical Optimisation and Process Engineering. Dyesol's inclusion in SPECIFIC is intended to accelerate the industrialisation of its revolutionary solar technology by focusing on key areas of development. Dyesol's recently completed Business and Technology Development Plans seek to maximise financial returns on its significant historical investment in research and development.

The SPECIFIC initiative is in addition to Dyesol's engagement in advanced negotiations to increase its presence at EPFL in Lausanne, where it will have an expert team to fast-track the scale-up of the new solid-state material set. Together, Dyesol and EPFL have achieved 15% solar conversion efficiency and are confident of further improvements. Solid State DSC is projected to achieve a lower Levelised Cost of Electricity than 1st and 2nd Generation solar technologies and compete successfully with fossil fuels without the assistance of feed-in tariffs. The co-ordinated activity aims to achieve mass manufacture of solid-state DSC glass and steel Building Integrated Photovoltaic applications by 2016/17.

The rationalisation of its global activities will result in Dyesol closing DyeTec Solar in the US where it has worked with Pilkington North America, a subsidiary of Nippon Sheet Glass of Japan. Dyesol is also well advanced in its initiatives to secure a substantial pre-commercialisation government grant which, if successful, will accelerate solid state DSC glass development activities in Australia.

Richard Caldwell, Dyesol's Executive Chairman commented: "Dyesol's collaboration with SPECIFIC is another important step in the industrialisation of our revolutionary DSC technology. The new positioning in Wales provides us with strong independence and allows us to have greater control over exploitation of our IP and industrialisation. The UK and European markets have always been a high priority for Dyesol and we feel very gratified to be recognised by SPECIFIC in this meaningful way. In our view, Wales is maintaining its global, government leadership in responsibly providing for the New Economy."

For more information on SPECIFIC please see www.specific.eu.com.

####

About Dyesol Limited
Dyesol is a global supplier of Dye Solar Cell (DSC) materials, technology and know-how. DSC is a photovoltaic technology enabling metal, glass and polymeric based products in the building, transport and electronics sectors to generate energy and improve energy efficiency. Dyesol partners with leading multinational companies who possess significant market share and established routes-to-market. The company is listed on the Australian Stock Exchange (DYE), the German Open Market (D5I), and is trading on the OTCQX (DYSOY) through its depositary BNY Mellon. Learn more and subscribe to our mailing list: www.dyesol.com.

About Dye Solar Cell Technology

DSC technology can best be described as ‘artificial photosynthesis’ using a layer of nano-titania (a pigment used in white paints and tooth paste) and light harvester deposited on glass, metal or polymer substrates. Light striking the harvester excites electrons which are absorbed by the titania to become an electric current. Compared to conventional silicon based photovoltaic technology, Dyesol’s technology has lower cost and embodied energy in manufacture, it produces electricity more efficiently even in low light conditions and can be directly incorporated into buildings by replacing conventional glass panels or metal sheets rather than taking up roof or extra land area.

For more information, please click here

Contacts:
Media & Investor Relations Contacts:

Dyesol Headquarters
Angela Geary
Dyesol Brand Manager
Tel: +61 (0)2 6299 1592


Australia
Viv Hardy
Callidus PR
Tel: +61(0)2 9283 4113
+61 (0)411 208 951


Germany & Europe
Eva Reuter
DR Reuter Investor Relations
Tel: +49 177 605 8804

Copyright © Dyesol Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Energy

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Industrial

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques May 3rd, 2018

Nanobiotix and Weill Cornell Medicine Partner on Pre-Clinical Research Inbox x May 3rd, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

Research partnerships

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project