Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > York researchers discover important mechanism behind nanoparticle reactivity

Abstract:
An international team of researchers has used pioneering electron microscopy techniques to discover an important mechanism behind the reaction of metallic nanoparticles with the environment.

York researchers discover important mechanism behind nanoparticle reactivity

Heslington, UK | Posted on November 3rd, 2013

Crucially, the research led by the University of York and reported in *Nature
Materials*, shows that oxidation of metals - the process that describes,
for example, how iron reacts with oxygen, in the presence of water, to form
rust - proceeds much more rapidly in nanoparticles than at the macroscopic
scale. This is due to the large amount of strain introduced in the
nanoparticles due to their size which is over a thousand times smaller than
the width of a human hair.

Improving the understanding of metallic nanoparticles - particularly those
of iron and silver - is of key importance to scientists because of their
many potential applications. For example, iron and iron oxide nanoparticles
are considered important in fields ranging from clean fuel technologies,
high density data storage and catalysis, to water treatment, soil
remediation, targeted drug delivery and cancer therapy.

The research team, which also included scientists from the University of
Leicester, the National Institute for Materials Science, Japan and the
University of Illinois at Urbana-Champaign, USA, used the unprecedented
resolution attainable with aberration-corrected scanning transmission
electron microscopy to study the oxidisation of cuboid iron nanoparticles
and performed strain analysis at the atomic level.

Lead investigator Dr Roland Kröger, from the University of York's
Department of Physics, said: "Using an approach developed at York and
Leicester for producing and analysing very well-defined nanoparticles, we
were able to study the reaction of metallic nanoparticles with the
environment at the atomic level and to obtain information on strain
associated with the oxide shell on an iron core.

"We found that the oxide film grows much faster on a nanoparticle than on a
bulk single crystal of iron - in fact many orders of magnitude quicker.
Analysis showed there was an astonishing amount of strain and bending in
nanoparticles which would lead to defects in bulk material."

The scientists used a method known as Z-contrast imaging to examine the
oxide layer that forms around a nanoparticle after exposure to the
atmosphere, and found that within two years the particles were completely
oxidised.

Corresponding author Dr Andrew Pratt, from York's Department of Physics and
Japan's National Institute for Materials Science, said: "Oxidation can
drastically alter a nanomaterial's properties - for better or worse - and
so understanding this process at the nanoscale is of critical importance.
This work will therefore help those seeking to use metallic nanoparticles
in environmental and technological applications as it provides a deeper
insight into the changes that may occur over their desired functional
lifetime."

The experimental work was carried out at the York JEOL Nanocentre and the
Department of Physics at the University of York, the Department of Physics
and Astronomy at the University of Leicester and the Frederick-Seitz
Institute for Materials Research at the University of Illinois at
Urbana-Champaign.

The scientists obtained images over a period of two years. After this time,
the iron nanoparticles, which were originally cube-shaped, had become
almost spherical and were completely oxidised.

Professor Chris Binns, from the University of Leicester, said: "For many
years at Leicester we have been developing synthesis techniques to produce
very well-defined nanoparticles and it is great to combine this technology
with the excellent facilities and expertise at York to do such penetrating
science. This work is just the beginning and we intend to capitalise on our
complementary abilities to initiate a wider collaborative programme."

The research was supported by a Max-Kade Foundation Visiting Professorship
stipend to Dr Kröger and financial support from the World Universities
Network (WUN). The Engineering and Physical Sciences Research Council
(EPSRC) funded the initial stages of the project (EP/D034604/1).

####

About University of York
The University of York was founded in 1963 with 200 students. Since then, it has expanded to 10,000 students and has over 30 academic departments and research centres.

Academic excellence

From its inception, the University has concentrated on strong viable departments and teaching and research of the highest quality. The quality of York's teaching has received many accolades. York and Cambridge top the teaching league with the highest scores in official teaching assessments.

For more information, please click here

Contacts:
David Garner
00 44 (1) 904 322153

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Enhanced Oxidation of Nanoparticles through Strain-Mediated Ionic Transport” by Andrew Pratt, Leonardo Lari, Ondrej Hovorka, Amish

More information on the University of York’s Department of Physics is

More information on the World Universities Network (WUN) at:

More information on the Engineering and Physical Sciences Research

Related News Press

News and information

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Imaging

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Discoveries

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Announcements

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Safety-Nanoparticles/Risk management

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic