Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > York researchers discover important mechanism behind nanoparticle reactivity

Abstract:
An international team of researchers has used pioneering electron microscopy techniques to discover an important mechanism behind the reaction of metallic nanoparticles with the environment.

York researchers discover important mechanism behind nanoparticle reactivity

Heslington, UK | Posted on November 3rd, 2013

Crucially, the research led by the University of York and reported in *Nature
Materials*, shows that oxidation of metals - the process that describes,
for example, how iron reacts with oxygen, in the presence of water, to form
rust - proceeds much more rapidly in nanoparticles than at the macroscopic
scale. This is due to the large amount of strain introduced in the
nanoparticles due to their size which is over a thousand times smaller than
the width of a human hair.

Improving the understanding of metallic nanoparticles - particularly those
of iron and silver - is of key importance to scientists because of their
many potential applications. For example, iron and iron oxide nanoparticles
are considered important in fields ranging from clean fuel technologies,
high density data storage and catalysis, to water treatment, soil
remediation, targeted drug delivery and cancer therapy.

The research team, which also included scientists from the University of
Leicester, the National Institute for Materials Science, Japan and the
University of Illinois at Urbana-Champaign, USA, used the unprecedented
resolution attainable with aberration-corrected scanning transmission
electron microscopy to study the oxidisation of cuboid iron nanoparticles
and performed strain analysis at the atomic level.

Lead investigator Dr Roland Kröger, from the University of York's
Department of Physics, said: "Using an approach developed at York and
Leicester for producing and analysing very well-defined nanoparticles, we
were able to study the reaction of metallic nanoparticles with the
environment at the atomic level and to obtain information on strain
associated with the oxide shell on an iron core.

"We found that the oxide film grows much faster on a nanoparticle than on a
bulk single crystal of iron - in fact many orders of magnitude quicker.
Analysis showed there was an astonishing amount of strain and bending in
nanoparticles which would lead to defects in bulk material."

The scientists used a method known as Z-contrast imaging to examine the
oxide layer that forms around a nanoparticle after exposure to the
atmosphere, and found that within two years the particles were completely
oxidised.

Corresponding author Dr Andrew Pratt, from York's Department of Physics and
Japan's National Institute for Materials Science, said: "Oxidation can
drastically alter a nanomaterial's properties - for better or worse - and
so understanding this process at the nanoscale is of critical importance.
This work will therefore help those seeking to use metallic nanoparticles
in environmental and technological applications as it provides a deeper
insight into the changes that may occur over their desired functional
lifetime."

The experimental work was carried out at the York JEOL Nanocentre and the
Department of Physics at the University of York, the Department of Physics
and Astronomy at the University of Leicester and the Frederick-Seitz
Institute for Materials Research at the University of Illinois at
Urbana-Champaign.

The scientists obtained images over a period of two years. After this time,
the iron nanoparticles, which were originally cube-shaped, had become
almost spherical and were completely oxidised.

Professor Chris Binns, from the University of Leicester, said: "For many
years at Leicester we have been developing synthesis techniques to produce
very well-defined nanoparticles and it is great to combine this technology
with the excellent facilities and expertise at York to do such penetrating
science. This work is just the beginning and we intend to capitalise on our
complementary abilities to initiate a wider collaborative programme."

The research was supported by a Max-Kade Foundation Visiting Professorship
stipend to Dr Kröger and financial support from the World Universities
Network (WUN). The Engineering and Physical Sciences Research Council
(EPSRC) funded the initial stages of the project (EP/D034604/1).

####

About University of York
The University of York was founded in 1963 with 200 students. Since then, it has expanded to 10,000 students and has over 30 academic departments and research centres.

Academic excellence

From its inception, the University has concentrated on strong viable departments and teaching and research of the highest quality. The quality of York's teaching has received many accolades. York and Cambridge top the teaching league with the highest scores in official teaching assessments.

For more information, please click here

Contacts:
David Garner
00 44 (1) 904 322153

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Enhanced Oxidation of Nanoparticles through Strain-Mediated Ionic Transport” by Andrew Pratt, Leonardo Lari, Ondrej Hovorka, Amish

More information on the University of York’s Department of Physics is

More information on the World Universities Network (WUN) at:

More information on the Engineering and Physical Sciences Research

Related News Press

Imaging

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

News and information

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Discoveries

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Environment

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Safety-Nanoparticles/Risk management

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project