Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Hopes for 10x faster computer processing boosted by new global research effort to measure nano-scale strain

Abstract:
· The Nanostrain project will support the development of cheaper, more reliable and energy efficient technologies delivering 10 fold increases in chip processor speed to 30 GHz, faster internet connections and huge energy savings worldwide

· The results will be made openly available to drive innovation in other technological sectors including ultra-high speed and resolution printing, chemical and optical sensors, electromagnetic telecommunications, automotive, power, oil & gas and medicine

· The project is backed by national measurement institutes such as the National Physical Laboratory and the Physikalisch-Technische Bundesanstalt, with industry support from the likes of IBM and Polytec

Hopes for 10x faster computer processing boosted by new global research effort to measure nano-scale strain

Teddington, UK | Posted on November 1st, 2013

A new international research collaboration announced today will deliver highly accurate measurements of strain in materials at the nano-scale to drive innovation in next generation electronic devices. The European Metrology Research Programme's Nanostrain project brings together public institutions from across Europe supported by global industry leaders including IBM.

A particular focus for the consortium is a class of materials (piezoelectrics) that change their shape in response to electric voltages. The project aims to advance commercial opportunities arising from controlled strain in nano-scale piezoelectrics including the development of the first Piezoelectric-Effect-Transistor (PET), a new digital switch with the potential to offer increased speed, reduced micro-chip size and lower power consumption.

Advances here would overcome a decade of stagnation in semiconductor transistor performance which has seen computational processing power fail to increase by more than a few percent since 2003.

However progress in these areas is dependent on the development of new and more accurate measurements and best practise to better understand strain at the nano-scale and how it can be exploited.

To address this ‘final piece of the jigsaw' the European Metrology Research Programme's three year Nanostrain project brings together several European national laboratories along with a consortium of collaborators including world class research instrument facilities at the ESRF and nine commercial companies spanning a wide range of applications.

The project will develop new tools for the characterisation of nano-strain under industrially relevant conditions of high stress, and electric fields. The results will then be openly available to manufacturers and designers to encourage innovation across a wide range of industries.

Prof Markys Cain, Nanostrain project lead at NPL said: "This is a completely unique collaboration, unparalleled in terms of its collective expertise in the areas of material science, metrology and the properties and performance of piezoelectric systems. It's an exciting project to be involved in as it won't be simply going over old ground or providing a minor improvement on what already exists. Currently there is no metrological framework or facilities for traceable measurement in this area. This is high risk, challenging work that will underpin a major step change in the performance of devices we use every day and bring highly influential new technologies to market in diverse sectors such as microelectronics, ICT, 3D printing and sensors industries."

Dr. Burkhard Beckhoff at PTB said: "Europe is particularly well positioned to benefit from new electronic components such as transistors and memory devices based on nanoscale functional materials, with a strong technology-driven manufacturing sector and a vibrant community of innovative companies. Through Nanostrain we hope to establish the metrological and material science foundations in Europe from which our ICT, bio-medical, sensors and instrumentation sectors can innovate and lead the world in the future."

Dr Glenn J. Martyna at IBM said: "Computer clock speeds have remained frozen since 2003, limiting not only innovation in new electronics, but also in global efforts to improve energy efficiency and reduce power consumption within the electronics sector as a whole. However with our latest calculations suggesting piezoelectronic transistors can operate at one-tenth of the voltage of today's CMOS equivalent, consuming 100 times less power as they do so, we believe we are on the verge of a major breakthrough. The next steps include improving our understanding of how this technology could best work in practise, and that relies on a better understanding of how these nano-scale piezoelectric materials strain in order to optimise their commercial performance. We are excited to be part of the EMRP Nanostrain project because we believe this impressive collection of organisations and expertise can deliver this important final step towards long-awaited fast processing speeds."

Full list of Nanostrain collaborators:

· National Physical Laboratory (NPL), UK

· Physikalisch-Technische Bundesanstalt (PTB), Germany

· Czech Metrology Institute (CMI), Czech Republic

· BAM Federal Institute for Materials Research and Testing, Germany

· XMaS- the EPSRC funded Mid-Range Facility for Materials Science at the ESRF, France

· European Synchrotron Radiation Facility (ESRF), France

· Centre national de la recherche scientifique (CNRS), France

· IBM

· Neaspec

· Global Foundries

· Piezo Institute, Belgium

· Istituto Nazionale di Ricerca Metrologica (INRIM), Italy

· Polytec

This work is funded through the European Metrology Research Programme (EMRP) Project IND54 Nanostrain. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

####

About National Physical Laboratory
NPL is the UK's National Measurement Institute, and is a world-leading centre of excellence in developing and applying the most accurate measurement standards, science and technology available.

For more information, please click here

Contacts:
Alex Cloney


0845 680 1872 (direct)

0750 602 2367 (mobile)

www.proofcommunication.com

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Laboratories

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

3D printing

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Exploring superconducting properties of 3-D printed parts: Australian researchers use 3-D printing to create a resonant microwave cavity via an aluminum-silicon alloy that boasts superconductivity when cooled below the critical temperature of aluminum July 20th, 2016

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Chip Technology

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Announcements

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Research partnerships

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic