Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Hopes for 10x faster computer processing boosted by new global research effort to measure nano-scale strain

Abstract:
· The Nanostrain project will support the development of cheaper, more reliable and energy efficient technologies delivering 10 fold increases in chip processor speed to 30 GHz, faster internet connections and huge energy savings worldwide

· The results will be made openly available to drive innovation in other technological sectors including ultra-high speed and resolution printing, chemical and optical sensors, electromagnetic telecommunications, automotive, power, oil & gas and medicine

· The project is backed by national measurement institutes such as the National Physical Laboratory and the Physikalisch-Technische Bundesanstalt, with industry support from the likes of IBM and Polytec

Hopes for 10x faster computer processing boosted by new global research effort to measure nano-scale strain

Teddington, UK | Posted on November 1st, 2013

A new international research collaboration announced today will deliver highly accurate measurements of strain in materials at the nano-scale to drive innovation in next generation electronic devices. The European Metrology Research Programme's Nanostrain project brings together public institutions from across Europe supported by global industry leaders including IBM.

A particular focus for the consortium is a class of materials (piezoelectrics) that change their shape in response to electric voltages. The project aims to advance commercial opportunities arising from controlled strain in nano-scale piezoelectrics including the development of the first Piezoelectric-Effect-Transistor (PET), a new digital switch with the potential to offer increased speed, reduced micro-chip size and lower power consumption.

Advances here would overcome a decade of stagnation in semiconductor transistor performance which has seen computational processing power fail to increase by more than a few percent since 2003.

However progress in these areas is dependent on the development of new and more accurate measurements and best practise to better understand strain at the nano-scale and how it can be exploited.

To address this ‘final piece of the jigsaw' the European Metrology Research Programme's three year Nanostrain project brings together several European national laboratories along with a consortium of collaborators including world class research instrument facilities at the ESRF and nine commercial companies spanning a wide range of applications.

The project will develop new tools for the characterisation of nano-strain under industrially relevant conditions of high stress, and electric fields. The results will then be openly available to manufacturers and designers to encourage innovation across a wide range of industries.

Prof Markys Cain, Nanostrain project lead at NPL said: "This is a completely unique collaboration, unparalleled in terms of its collective expertise in the areas of material science, metrology and the properties and performance of piezoelectric systems. It's an exciting project to be involved in as it won't be simply going over old ground or providing a minor improvement on what already exists. Currently there is no metrological framework or facilities for traceable measurement in this area. This is high risk, challenging work that will underpin a major step change in the performance of devices we use every day and bring highly influential new technologies to market in diverse sectors such as microelectronics, ICT, 3D printing and sensors industries."

Dr. Burkhard Beckhoff at PTB said: "Europe is particularly well positioned to benefit from new electronic components such as transistors and memory devices based on nanoscale functional materials, with a strong technology-driven manufacturing sector and a vibrant community of innovative companies. Through Nanostrain we hope to establish the metrological and material science foundations in Europe from which our ICT, bio-medical, sensors and instrumentation sectors can innovate and lead the world in the future."

Dr Glenn J. Martyna at IBM said: "Computer clock speeds have remained frozen since 2003, limiting not only innovation in new electronics, but also in global efforts to improve energy efficiency and reduce power consumption within the electronics sector as a whole. However with our latest calculations suggesting piezoelectronic transistors can operate at one-tenth of the voltage of today's CMOS equivalent, consuming 100 times less power as they do so, we believe we are on the verge of a major breakthrough. The next steps include improving our understanding of how this technology could best work in practise, and that relies on a better understanding of how these nano-scale piezoelectric materials strain in order to optimise their commercial performance. We are excited to be part of the EMRP Nanostrain project because we believe this impressive collection of organisations and expertise can deliver this important final step towards long-awaited fast processing speeds."

Full list of Nanostrain collaborators:

· National Physical Laboratory (NPL), UK

· Physikalisch-Technische Bundesanstalt (PTB), Germany

· Czech Metrology Institute (CMI), Czech Republic

· BAM Federal Institute for Materials Research and Testing, Germany

· XMaS- the EPSRC funded Mid-Range Facility for Materials Science at the ESRF, France

· European Synchrotron Radiation Facility (ESRF), France

· Centre national de la recherche scientifique (CNRS), France

· IBM

· Neaspec

· Global Foundries

· Piezo Institute, Belgium

· Istituto Nazionale di Ricerca Metrologica (INRIM), Italy

· Polytec

This work is funded through the European Metrology Research Programme (EMRP) Project IND54 Nanostrain. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

####

About National Physical Laboratory
NPL is the UK's National Measurement Institute, and is a world-leading centre of excellence in developing and applying the most accurate measurement standards, science and technology available.

For more information, please click here

Contacts:
Alex Cloney


0845 680 1872 (direct)

0750 602 2367 (mobile)

www.proofcommunication.com

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

3D printing

3-D printing and custom manufacturing: from concept to classroom: Strategic investments from NSF help engineers revolutionize the manufacturing process December 5th, 2013

World Renowned Tech Developers Visit Seoul for 'Tech+ Forum 2013' Eric Drexler the 'Nano' Founder and Other Global Innovators to Provide Lectures, Demonstrations November 7th, 2013

CU-Boulder researchers develop 4-D printing technology for composite materials October 24th, 2013

RAPID 2014 Returns to Detroit: The Authority on 3D Printing, Scanning and Additive Manufacturing Returns to its Roots October 18th, 2013

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Research partnerships

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE