Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Hopes for 10x faster computer processing boosted by new global research effort to measure nano-scale strain

Abstract:
· The Nanostrain project will support the development of cheaper, more reliable and energy efficient technologies delivering 10 fold increases in chip processor speed to 30 GHz, faster internet connections and huge energy savings worldwide

· The results will be made openly available to drive innovation in other technological sectors including ultra-high speed and resolution printing, chemical and optical sensors, electromagnetic telecommunications, automotive, power, oil & gas and medicine

· The project is backed by national measurement institutes such as the National Physical Laboratory and the Physikalisch-Technische Bundesanstalt, with industry support from the likes of IBM and Polytec

Hopes for 10x faster computer processing boosted by new global research effort to measure nano-scale strain

Teddington, UK | Posted on November 1st, 2013

A new international research collaboration announced today will deliver highly accurate measurements of strain in materials at the nano-scale to drive innovation in next generation electronic devices. The European Metrology Research Programme's Nanostrain project brings together public institutions from across Europe supported by global industry leaders including IBM.

A particular focus for the consortium is a class of materials (piezoelectrics) that change their shape in response to electric voltages. The project aims to advance commercial opportunities arising from controlled strain in nano-scale piezoelectrics including the development of the first Piezoelectric-Effect-Transistor (PET), a new digital switch with the potential to offer increased speed, reduced micro-chip size and lower power consumption.

Advances here would overcome a decade of stagnation in semiconductor transistor performance which has seen computational processing power fail to increase by more than a few percent since 2003.

However progress in these areas is dependent on the development of new and more accurate measurements and best practise to better understand strain at the nano-scale and how it can be exploited.

To address this ‘final piece of the jigsaw' the European Metrology Research Programme's three year Nanostrain project brings together several European national laboratories along with a consortium of collaborators including world class research instrument facilities at the ESRF and nine commercial companies spanning a wide range of applications.

The project will develop new tools for the characterisation of nano-strain under industrially relevant conditions of high stress, and electric fields. The results will then be openly available to manufacturers and designers to encourage innovation across a wide range of industries.

Prof Markys Cain, Nanostrain project lead at NPL said: "This is a completely unique collaboration, unparalleled in terms of its collective expertise in the areas of material science, metrology and the properties and performance of piezoelectric systems. It's an exciting project to be involved in as it won't be simply going over old ground or providing a minor improvement on what already exists. Currently there is no metrological framework or facilities for traceable measurement in this area. This is high risk, challenging work that will underpin a major step change in the performance of devices we use every day and bring highly influential new technologies to market in diverse sectors such as microelectronics, ICT, 3D printing and sensors industries."

Dr. Burkhard Beckhoff at PTB said: "Europe is particularly well positioned to benefit from new electronic components such as transistors and memory devices based on nanoscale functional materials, with a strong technology-driven manufacturing sector and a vibrant community of innovative companies. Through Nanostrain we hope to establish the metrological and material science foundations in Europe from which our ICT, bio-medical, sensors and instrumentation sectors can innovate and lead the world in the future."

Dr Glenn J. Martyna at IBM said: "Computer clock speeds have remained frozen since 2003, limiting not only innovation in new electronics, but also in global efforts to improve energy efficiency and reduce power consumption within the electronics sector as a whole. However with our latest calculations suggesting piezoelectronic transistors can operate at one-tenth of the voltage of today's CMOS equivalent, consuming 100 times less power as they do so, we believe we are on the verge of a major breakthrough. The next steps include improving our understanding of how this technology could best work in practise, and that relies on a better understanding of how these nano-scale piezoelectric materials strain in order to optimise their commercial performance. We are excited to be part of the EMRP Nanostrain project because we believe this impressive collection of organisations and expertise can deliver this important final step towards long-awaited fast processing speeds."

Full list of Nanostrain collaborators:

· National Physical Laboratory (NPL), UK

· Physikalisch-Technische Bundesanstalt (PTB), Germany

· Czech Metrology Institute (CMI), Czech Republic

· BAM Federal Institute for Materials Research and Testing, Germany

· XMaS- the EPSRC funded Mid-Range Facility for Materials Science at the ESRF, France

· European Synchrotron Radiation Facility (ESRF), France

· Centre national de la recherche scientifique (CNRS), France

· IBM

· Neaspec

· Global Foundries

· Piezo Institute, Belgium

· Istituto Nazionale di Ricerca Metrologica (INRIM), Italy

· Polytec

This work is funded through the European Metrology Research Programme (EMRP) Project IND54 Nanostrain. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

####

About National Physical Laboratory
NPL is the UK's National Measurement Institute, and is a world-leading centre of excellence in developing and applying the most accurate measurement standards, science and technology available.

For more information, please click here

Contacts:
Alex Cloney


0845 680 1872 (direct)

0750 602 2367 (mobile)

www.proofcommunication.com

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Laboratories

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

ORNL research reveals unique capabilities of 3-D printing October 15th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

3D printing

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

ORNL research reveals unique capabilities of 3-D printing October 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Chip Technology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Crumpled graphene could provide an unconventional energy storage: Two-dimensional carbon “paper” can form stretchable supercapacitors to power flexible electronic devices October 4th, 2014

Research partnerships

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE