Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Vibrating micro plates bring order to overcrowded radio spectrum: New type of filter is prepared for future growth of frequency standards

he two square rectangles in the center of this SEM picture are the two resonators
he two square rectangles in the center of this SEM picture are the two resonators

Abstract:
GSM, WiFi, Bluetooth, 4G, GPS: a smartphone already has to handle many wireless standards. And this number will only increase further. There are still no good filters to keep all those future standards separate. Researchers at the MESA+ Institute for Nanotechnology have taken an important step with a new type of filter, based on micromechanics. They have published their finding in Applied Physics Letters.

Vibrating micro plates bring order to overcrowded radio spectrum: New type of filter is prepared for future growth of frequency standards

Enschede, Netherlands | Posted on October 31st, 2013

Filters that can be accurately tuned to the frequency band you want to receive as a user are becoming increasingly important. Otherwise, if a nearby signal is much stronger, it drowns out the signal you want to receive. The number of available frequencies is limited, so it is becoming ever busier. Intelligent use of the airwaves, by utilising every available piece, is becoming more important. The filters now presented by the researchers are based on micromechanical resonators and can be accurately tuned to the desired frequency.

One of the reasons for choosing a mechanical solution is that the conventional filter consists of an inductor and a capacitor, an ‘LC circuit'. Especially a good quality inductor is hard to achieve on a chip. The result would be: separate LC circuits for each frequency band, mounted outside the chip, which would take up too much space. New solutions are already being sought all over the world. The current standard is the electromechanical filter called Surface Acoustic Wave filter, but this, too, requires too much space if you need several of them.

Vibration

The solution presented by the researchers consists of two mechanical resonators. They vibrate at an adjustable frequency thanks to the piezoelectric material PZT. This material is applied to metal. Normally, the piezoelectric material vibrates perpendicular to the metal and the thickness of the layer determines the frequency. However,the frequency can be varied by making it vibrate in the same direction as the metal. Two resonators are used, which are not connected mechanically or electrically. By means of the intelligent handling of the input and output signals of the two resonators, adverse ‘parasitic' effects are negated. This is done by subtracting the output signals, while the input signals are ‘in phase'. The result is a selective filter - fourth order - that passes a limited part of the band and weakens the frequencies above and below. It can be accurately tuned with the vibrating frequencies of the two resonators. The filter presented by the researchers in Applied Physics Letters, operates at about 400 Megahertz. That is still too low for mobile applications, but new versions already reach higher frequencies, and Gigahertz frequencies needed for smartphones are feasible, according to the researchers.

The researchers also expect that these resonators can be integrated on the chip or directly ‘bonded' to the chip: they are much smaller than inductors. It therefore becomes possible to apply fifty resonator pairs, which facilitates flexible use of frequencies. This is needed, for example, in ‘cognitive radio', that uses each piece of free space as it becomes available and then jumps to another frequency when needed.

The research was conducted by the Transducers Science and Technology Group of the University of Twente MESA+ Institute for Nanotechnology in collaboration with the CTIT Institute Integrated Circuit Design group. There was also cooperation with the spinoff company SolMateS, which is specialised in making piezoelectric layers on chips. The project is financed by Dutch Technology Foundation STW.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Wireless/telecommunications/RF/Antennas

Iranian Scientists Use Nanotechnology to Produce Dielectric Microwave Ceramics October 14th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

NIST quantum probe enhances electric field measurements October 8th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE