Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Columbia Engineers Develop New Device Architecture for 2D Materials, Making Electrical Contact from the 1D Edge: New Approach Produces Cleanest Graphene Yet, with Previously Unrealized Performance

Abstract:
Columbia Engineering researchers have experimentally demonstrated for the first time that it is possible to electrically contact an atomically thin two-dimensional (2D) material only along its one-dimensional (1D) edge, rather than contacting it from the top, which has been the conventional approach. With this new contact architecture, they have developed a new assembly technique for layered materials that prevents contamination at the interfaces, and, using graphene as the model 2D material, show that these two methods in combination result in the cleanest graphene yet realized. The study is published in Science on November 1, 2013.

Columbia Engineers Develop New Device Architecture for 2D Materials, Making Electrical Contact from the 1D Edge: New Approach Produces Cleanest Graphene Yet, with Previously Unrealized Performance

New York, NY | Posted on October 31st, 2013

"This is an exciting new paradigm in materials engineering where instead of the conventional approach of layer by layer growth, hybrid materials can now be fabricated by mechanical assembly of constituent 2D crystals," says Electrical Engineering Professor Ken Shepard, co-author of the paper. "No other group has been able to successfully achieve a pure edge-contact geometry to 2D materials such as graphene."

He adds that earlier efforts have looked at how to improve ‘top contacts' by additional engineering such as adding dopants: "Our novel edge-contact geometry provides more efficient contact than the conventional geometry without the need for further complex processing. There are now many more possibilities in the pursuit of both device applications and fundamental physics explorations."

First isolated in 2004, graphene is the best-studied 2D material and has been the subject of thousands of papers studying its electrical behavior and device applications. "But in nearly all of this work, the performance of graphene is degraded by exposure to contamination," notes Mechanical Engineering Professor James Hone who is also a co-author of the study. "It turns out that the problems of contamination and electrical contact are linked. Any high-performance electronic material must be encapsulated in an insulator to protect it from the environment. Graphene lacks the ability to make out-of-plane bonds, which makes electrical contact through its surface difficult, but also prevents bonding to conventional 3D insulators such as oxides. Instead, the best results are obtained by using a 2D insulator, which does not need to make bonds at its surface. However, there has been no way to electrically access a fully-encapsulated graphene sheet until now."

In this work, says Cory Dean, who led the research as a postdoc at Columbia and is now an assistant professor at The City College of New York, the team solved both the contact and contamination problems at once. "One of the greatest assets of 2D materials such as graphene is that being only one atom thick, we have direct access to its electronic properties. At the same time, this can be one of its worst features since this makes the material extremely sensitive to its environment. Any external contamination quickly degrades performance. The need to protect graphene from unwanted disorder, while still allowing electrical access, has been the most significant roadblock preventing development of graphene-based technologies. By making contact only to the 1D edge of graphene, we have developed a fundamentally new way to bridge our 3D world to this fascinating 2D world, without disturbing its inherent properties. This virtually eliminates external contamination and finally allows graphene to show its true potential in electronic devices."

The researchers fully encapsulated the 2D graphene layer in a sandwich of thin insulating boron nitride crystals, employing a new technique in which crystal layers are stacked one-by-one. "Our approach for assembling these heterostructures completely eliminates any contamination between layers," Dean explains, "which we confirmed by cross-sectioning the devices and imaging them in a transmission electron microscope with atomic resolution."

Once they created the stack, they etched it to expose the edge of the graphene layer, and then evaporated metal onto the edge to create the electrical contact. By making contact along the edge, the team realized a 1D interface between the 2D active layer and 3D metal electrode. And, even though electrons entered only at the 1D atomic edge of the graphene sheet, the contact resistance was remarkably low, reaching 100 Ohms per micron of contact width—a value smaller than what can be achieved for contacts at the graphene top surface.

With the two new techniques—the contact architecture through the 1D edge and the stacking assembly method that prevents contamination at the interfaces—the team was able to produce what they say is the "cleanest graphene yet realized." At room temperature, these devices exhibit previously unachievable performance, including electron mobility at least twice as large as any conventional 2D electron system, and sheet resistivity less than 40 Ohms when sufficient charges are added to the sheet by electrostatic "gating." Amazingly, this 2D sheet resistance corresponds to a "bulk" 3D resistivity smaller than that of any metal at room temperature. At low temperature, electrons travel through the team's samples without scattering, a phenomenon known as ballistic transport. Ballistic transport, had previously been observed in samples close to one micrometer in size, but this work demonstrates the same behavior in samples as large as 20 micrometers. "So far this is limited purely by device size," says Dean, "indicating that the true ‘intrinsic' behavior is even better."

The team is now working on applying these techniques to develop new hybrid materials by mechanical assembly and edge contact of hybrid materials drawing from the full suite of available 2D layered materials, including graphene, boron nitride, transition metal dichlcogenides (TMDCs), transition metal oxides (TMOs), and topological insulators (TIs). "We are taking advantage of the unprecedented performance we now routinely achieve in graphene-based devices to explore effects and applications related to ballistic electron transport over fantastically large length scales," Dean adds. "With so much current research focused on developing new devices by integrating layered 2D systems, potential applications are incredible, from vertically structured transistors, tunneling based devices and sensors, photoactive hybrid materials, to flexible and transparent electronics."

"This work results from a wide collaboration of researchers interested in both pure and applied science," says Hone. "The unique environment at Columbia provides an unparalleled opportunity for these two communities to interact and build off one another."

The Columbia team demonstrated the first technique to mechanically layer 2D materials in 2010. These two new techniques, which are critical advancements in the field, are the result of interdisciplinary efforts by Lei Wang (PhD student, Electrical Engineering, Hone group) and Inanc Meric (Postdoc, Electrical Engineering, Shepard group), co-lead authors on this project who worked with the groups of Philip Kim (Physics and Applied Physics and Applied Mathematics, Columbia), James Hone (Mechanical Engineering, Columbia), Ken Shepard (Electrical Engineering, Columbia) and Cory Dean (Physics, City College of New York).

This work is supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program, the National Science Foundation (DMR-1124894), the Air Force Office of Scientific Research (FA9550-09-1-0705), the office of Naval Research (N000141310662), the ONR Grant N000141110633 and the Defense Advanced Research Projects Agency (under ONR Grant N000141210814), and the Nano Material Technology Development Program through the National Research Foundation of Korea (2012M3A7B4049966).

####

About Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society’s more difficult challenges.

For more information, please click here

Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
212-854-3206 (o)
347-453-7408 (c)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene/ Graphite

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Direct radiolabeling of nanomaterials: Directly radiolabeled nanographene materials without chelators are suitable for bioimaging applications February 9th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Nanoelectronics

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Research partnerships

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Highly sensitive gas sensors for volatile organic compound detection February 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project