Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Defective nanotubes turned into light emitters

Abstract:
University of the Basque Country researchers have developed and patented a new source of light emitter based on boron nitride nanotubes and suitable for developing high-efficiency optoelectronic devices.

Defective nanotubes turned into light emitters

Usurbil, Spain | Posted on October 31st, 2013

Scientists are usually after defect-free nano-structures. Yet in this case the UPV/EHU researcher Angel Rubio and his collaborators have put the structural defects in boron nitride nanotubes to maximum use. The outcome of his research is a new light-emitting source that can easily be incorporated into current microelectronics technology. The research has also resulted in a patent.

Boron nitride is a promising material in the field of nanotechnology, thanks to its excellent insulating properties, resistance and two-dimensional structure similar to graphene. And specifically, the properties of hexagonal boron nitride, the focus of this research, are far superior to those of other metals and semiconductors currently being used as light emitters, for example, in applications linked to optical storage (DVD) or communications. "It is extremely efficient in ultraviolet light emission, one of the best currently available on the market," remarked the UPV/EHU researcher Angel Rubio.

However, the light emission of boron nitride nanotubes takes place within a very limited range of the ultraviolet spectrum, which means they cannot be used in applications in which the emission needs to be produced within a broader range of frequencies and in a controlled way (for example in applications using visible light).
The research carried out by the UPV/EHU's NanoBio Spectroscopy Group has come up with a solution to overcome this limitation, and open up the door to the use of hexagonal boron nitride nanotubes in commercial applications.

They have shown that by applying an electric field perpendicular to the nanotube, it is possible to get the latter to emit light across the whole spectrum from the infrared to the far ultraviolet and to control it in a simple way. This ease of control is only to be found in nanotubes due to their cylindrical geometry (these are tubular structures with lengths in the order of micrometres, and diameters in the order of nanometres).

Rubio has been working with boron nitride nanotubes for nearly 20 years. "We proposed them theoretically, and then they were found experimentally. So far, all our theoretical predictions have been confirmed, and that is very gratifying," he explained. Once the properties of layered hexagonal boron nitride and its extremely high efficiency in light emission were known, this research sought to show that these properties are not lost in nanotubes. "We knew that when a sheet was rolled up and a tube was formed, a strong coupling was produced with the electric field and that would enable us to change the light emission. We wanted to show," and they did in fact show, "that light emission efficiency was not being lost due to the fact that the nanotube was formed, and that it is also controllable."
Boron absences

The device functions on the basis of the use of natural (or induced) defects in boron nitride nanotubes. In particular, the defects enabling controlled emission are the gaps that appear in the wall of the nanotube due to the absence of a boron atom, which is the most common defect in its manufacture. "All nanotubes are very similar, but the fact that you have these defects makes the system operational and efficient, and what is more, the more defects you have, the better it functions."

Rubio highlighted "the simplicity" of the device proposed. "It's a device that functions with defects, it does not have to be pure, and it's very easy to build and control." Nanotubes can be synthesised using standard methods in the scientific community for producing inorganic nanotubes; the structures synthesised as a result have natural defects, and it is possible to incorporate more if you want by means of simple, post-synthesis irradiation processes. "It has a traditional transistor configuration, and what we are proposing would work with current electronic devices," he stressed. The "less attractive" part, as specified by Rubio, is that boron nitride nanotubes are still only produced in very small quantities, and as yet there is no economically viable synthesis process on a commercial scale.
Beyond graphene

Rubio is in no doubt about the potential of the new materials based on two-dimensional systems, and specifically, of compounds that offer an alternative to graphene, like, for example, hexagonal boron nitride. Without prejudice to graphene, Rubio believes that the alternative field could have greater potential in the long term and needs to be explored: "It's a field that has been active for over the last fifteen years, even though it has been less visible. We have been working with hexagonal boron nitride since 1994, it's like our child, and I believe that it has opened up an attractive field of research, which more and more groups are joining."
Further information

This research has been conducted by the NanoBio Spectroscopy Group (ETSF-Centre for Scientific Development, Department of Materials Physics, Faculty of Chemistry of the UPV/EHU), led by Prof Ángel Rubio, in collaboration with Dr Ludger Wirtz (University of Luxembourg), Dr Claudi Attaccalite (University of Grenoble) and Dr Andrea Marini (CNR Italian Research Council - Rome), who are three veteran researchers in the group.

Ángel Rubio is professor of Materials Physics of the UPV/EHU, head of the NanoBio Spectroscopy Group and Chairman of the ETSF-European Theoretical Spectroscopy Facility of the UPV/EHU, as well as external director of the Fritz Haber Institute of the Max Planck Society.

Patents granted

"Gated-controlled light-emitting device made of BN nanotubes with defects", UPV/EHU Patent PCT/ES2012/070098.

####

For more information, please click here

Contacts:
Aitziber Lasa

34-943-363-040

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publications

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Optical computing/ Photonic computing

Novel solid-state nanomaterial platform enables terahertz photonics February 17th, 2015

Light in the Moebius strip: A Moebius strip created from laser light opens up new possibilities for material processing and for micro- and nanotechnology February 13th, 2015

New design tool for metamaterials: Berkeley Lab study shows how to predict metamaterial nonlinear optical properties February 10th, 2015

The power of light-matter coupling: A theoretical study shows that strong ties between light and organic matter at the nanoscale open the door to modifying these coupled systems' optical, electronic or chemical properties February 5th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Patents/IP/Tech Transfer/Licensing

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

Nanotech Discoveries Move from Lab to Marketplace with Lintec Deal: Licensing Partnership Brings Together University Technology, New Richardson-Based Facility Directed by Alumni February 9th, 2015

Graphenea granted patent on graphene transfer February 9th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

Photonics/Optics/Lasers

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Research partnerships

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

European roadmap for graphene science and technology published February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Increasing Efficiency of Cooling Devices in Oil, Gas Industries February 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE