Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Molecular Velcro' may lead to cost-effective alternatives to natural antibodies: Berkeley Lab researchers take cues from nature in designing a programmable nanomaterial for biosensing

Long organic molecules called peptoids self-assemble into a molecular film on the surface of a water solution. As this film gets folded into a nanosheet, segments of the peptoid get pushed out into loops, which eventually decorate the surface of the nanosheet.

Credit: Berkeley Lab
Long organic molecules called peptoids self-assemble into a molecular film on the surface of a water solution. As this film gets folded into a nanosheet, segments of the peptoid get pushed out into loops, which eventually decorate the surface of the nanosheet.

Credit: Berkeley Lab

Abstract:
Taking inspiration from the human immune system, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have created a new material that can be programmed to identify an endless variety of molecules. The new material resembles tiny sheets of Velcro, each just one-hundred nanometers across. But instead of securing your sneakers, this molecular Velcro mimics the way natural antibodies recognize viruses and toxins, and could lead to a new class of biosensors.

'Molecular Velcro' may lead to cost-effective alternatives to natural antibodies: Berkeley Lab researchers take cues from nature in designing a programmable nanomaterial for biosensing

Berkeley, CA | Posted on October 30th, 2013

"Antibodies have a really effective architectural design: a structural scaffold that pretty much stays the same, whether it's for snake venom or the common cold, and endlessly variable functional loops that bind foreign invaders," says Ron Zuckermann, a senior scientist at Berkeley Lab's Molecular Foundry. "We've mimicked that here, with a two-dimensional nanosheet scaffold covered with little functional loops like Velcro."

Zuckermann, Director of the Molecular Foundry's Biological Nanostructures Facility, is corresponding author on a paper reporting these results in ACS Nano, titled "Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition." Coauthoring the paper are Gloria K. Olivier, Andrew Cho, Babak Sanii, Michael D. Connolly, and Helen Tran.

Zuckermann's nanosheet scaffolds are self-assembled from peptoids - synthetic, bio-inspired polymers capable of folding into protein-like architectures. Like beads on a string, each peptoid molecule is a long chain of small molecular units arranged in a specific pattern. In earlier work, Zuckermann showed how certain simple peptoids can fold themselves into nanosheets just a few nanometers thick but up to one-hundred micrometers across - dimensions equivalent to a one-millimeter-thick plastic sheet the size of a football field.

"The reason that nanosheets form is because there's a code for it programmed directly into the peptoids," says Zuckermann. "In this case it's admittedly a pretty rudimentary program, but it shows how if you bring in just a little bit of sequence information: Boom! You can make a nanosheet."

To create functional loops on the nanosheets, the researchers insert short molecular segments into nanosheet-forming peptoid polymers. As the peptoids knit themselves together into sheets, the inserted segments are excluded from the fold, pushed out instead into loops upon the nanosheet surface. The functional loops can be programmed to selectively bind certain enzymes or inorganic materials, which makes the new material promising for chemical sensing and catalysis.

"The advantage here is that we're able to make these materials in very high yield," says Gloria Olivier, a postdoctoral researcher and lead author on the paper. "We're borrowing this idea of stringing together a particular sequence of monomers, which Nature uses to build 3D protein structures, and applying it to the world of non-natural materials, to create a really useful material that can assemble itself."

The researchers demonstrated the flexibility of their method by creating nanosheets with loops of varying composition, length, and density; they made nanosheets that can pick specific enzymes out of a solution, causing chemical changes that can be detected with standard techniques, and others that bind selectively to gold metal, seeding the growth of gold nanoparticles and films.

"Peptoids can withstand much harsher conditions than peptides, their counterpart in nature," says Olivier. "So if you wanted to build a diagnostic device that can be taken outside of a laboratory, or a device that can screen for biomarkers in the presence of a mixture of proteins like proteases, peptoids are an excellent choice."

Looking beyond the exciting applications, Zuckermann points out that this work represents an important step toward extending the rules of protein folding to the world of synthetic materials.

Says Zuckermann, "That's kind of what my whole research program here is about: learning from the richness of chemical sequence information found in biology to create new types of advanced synthetic materials. We're really just starting to scratch the surface."

###

This research was funded by the DOE Office of Science and the Defense Threat Reduction Agency. The work was conducted at the Molecular Foundry with support from the Advanced Light Source, and at the Advanced Photon Source at Argonne National Laboratory.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit science.energy.gov

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Alison Hatt

510-486-7154

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article - "Antibody-Mimetic Peptoid Nanosheets for Molecular Recognition." Gloria K. Olivier, Andrew Cho, Babak Sanii, Michael D. Connolly, Helen Tran, and Ronald N. Zuckermann. ACS Nano, 7, 9276-9386, (2013):

For more about this research, listen to Episode 75 of the ACS Nano podcast:

For more about Ron Zuckermann's research and the Molecular Foundry, visit:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Synthetic Biology

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i December 8th, 2023

The medicine of the future could be artificial life forms October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project