Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > FEI Introduces the New Tecnai Femto Ultrafast Electron Microscope: The Tecnai Femto is the first to commercialize revolutionary technology to investigate ultrafast events occurring at the nanometer femtosecond spatiotemporal scale

Abstract:
FEI (NASDAQ: FEIC) today released the Tecnai™ Femto ultrafast electron microscope (UEM), enabling scientists to explore ultrafast events and processes that occur at the atomic and molecular spatial scale over time spans measured in femtoseconds (10-15 seconds). These include such fundamental processes as the absorption of light energy and its transformation into heat or mechanical changes (photoactuation) and the crystallization or recrystallization of materials--including large biological molecules for structural analysis. The Tecnai Femto is the first system to commercialize the patented ultrafast electron microscopy technology pioneered by Nobel laureate Prof. Ahmed Zewail at the California Institute of Technology. The first Tecnai Femto UEM will be installed at the University of Minnesota in November 2013.

FEI Introduces the New Tecnai Femto Ultrafast Electron Microscope: The Tecnai Femto is the first to commercialize revolutionary technology to investigate ultrafast events occurring at the nanometer femtosecond spatiotemporal scale

Hillsboro, OR | Posted on October 29th, 2013

David Flannigan, Ray D. and Mary T. Johnson/Mayon Plastics assistant professor in the Department of Chemical Engineering and Materials Science at the University of Minnesota, and previously a member of Professor Zewail's research team at Cal Tech, explained, "Over the last decade microscope manufacturers like FEI have developed instruments that have made observations of objects as small as individual atoms relatively routine. Ultrafast electron microscopy now gives us a powerful tool to look at the movements and changes that occur at this scale. Because the distances are so small, the time scale is also condensed--it doesn't take very long to travel a nanometer or two. Using single-electron pulses, we have measured changes over time periods as short as tens of femtoseconds--those are millionths of a billionth of a second."

"This is a truly revolutionary technology," stated Trisha Rice, FEI's vice president and general manager of the Materials Science Business Unit. "Until now, the only commercially-released instruments that could look at processes at this time scale were limited to observations of bulk materials. The Tecnai Femto UEM is the first to combine femtosecond time resolution with nanometer spatial resolution, allowing researchers to see the structural changes that occur at the atomic scale in response to the energetic stimuli."

Flannigan added, "The literature already contains a wide variety of UEM applications described over two generations of instrument development in Zewail's lab at Cal Tech since he began this work in 2004. For instance, we looked at the mechanical properties and photoactuation of silicon nitride cantilevers and at the photo-induced heating and expansion of carbon nanotubes. Looking forward, we plan to focus our attention on the development of new applications with important practical value. For example, we want to look at the crystallization of biological macro molecules preparatory to structural analysis, which could lead to important advances in understanding the structure-function relationships of complex living systems."

The Tecnai Femto is a member of FEI's Tecnai family of transmission electron microscopes (TEM). It has been modified to accommodate ultra short laser pulses that stimulate a brief "flash" of photoelectrons from the electron source, and a precisely-timed pulse of laser energy directed at the sample as a stimulus. To achieve the highest temporal resolution when observing reversible processes, the Tecnai Femto UEM operates in stroboscopic mode where a large number of precisely-timed flashes, each containing as few as a single electron, build up a representative image of the sample at a given delay between stimulus and flash. The delay is then adjusted incrementally and another image acquired, resulting ultimately in a sequence of images much like the frames of a motion picture. For irreversible processes, such as fractures, the instrument can be operated in the single pulse mode with many electrons in the pulse, but unlike the femtosecond single-electron mode, the time resolution reaches picoseconds to nanoseconds because of Coulomb repulsion. Importantly, the instrument can also be operated in conventional continuous-beam TEM mode.

For more information about the Tecnai Femto UEM, please visit www.fei.com/tecnai-femto.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enables customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,500 employees and sales and service operations in more than 50 countries around the world.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Tecnai Femto UEM. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship and deliver the tools or software as expected, failure of the product or technology to perform as expected and achieve anticipated results or cost savings, unexpected technology problems and challenges, changes to the technology, the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results, and the inability of the customer to develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Imaging

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Announcements

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Tools

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Patents/IP/Tech Transfer/Licensing

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

New-Contracts/Sales/Customers

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Industrial Nanotech, Inc. Begins Supplying One of World's Largest Pulp and Paper Product Companies with Patented Energy Saving and Protective Coatings for Heat Process Equipment January 4th, 2016

Industrial Nanotech, Inc. Announces Two More Offshore Oil and Gas Platform Projects December 9th, 2015

Nanotech Signs MOU with Leading European Manufacturer to Supply Optical Thin Film to the Banknote Market: Alliance Combines Technology and Production Capacity to Address High Volume Opportunities November 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic