Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > FEI Introduces the New Tecnai Femto Ultrafast Electron Microscope: The Tecnai Femto is the first to commercialize revolutionary technology to investigate ultrafast events occurring at the nanometer femtosecond spatiotemporal scale

Abstract:
FEI (NASDAQ: FEIC) today released the Tecnai™ Femto ultrafast electron microscope (UEM), enabling scientists to explore ultrafast events and processes that occur at the atomic and molecular spatial scale over time spans measured in femtoseconds (10-15 seconds). These include such fundamental processes as the absorption of light energy and its transformation into heat or mechanical changes (photoactuation) and the crystallization or recrystallization of materials--including large biological molecules for structural analysis. The Tecnai Femto is the first system to commercialize the patented ultrafast electron microscopy technology pioneered by Nobel laureate Prof. Ahmed Zewail at the California Institute of Technology. The first Tecnai Femto UEM will be installed at the University of Minnesota in November 2013.

FEI Introduces the New Tecnai Femto Ultrafast Electron Microscope: The Tecnai Femto is the first to commercialize revolutionary technology to investigate ultrafast events occurring at the nanometer femtosecond spatiotemporal scale

Hillsboro, OR | Posted on October 29th, 2013

David Flannigan, Ray D. and Mary T. Johnson/Mayon Plastics assistant professor in the Department of Chemical Engineering and Materials Science at the University of Minnesota, and previously a member of Professor Zewail's research team at Cal Tech, explained, "Over the last decade microscope manufacturers like FEI have developed instruments that have made observations of objects as small as individual atoms relatively routine. Ultrafast electron microscopy now gives us a powerful tool to look at the movements and changes that occur at this scale. Because the distances are so small, the time scale is also condensed--it doesn't take very long to travel a nanometer or two. Using single-electron pulses, we have measured changes over time periods as short as tens of femtoseconds--those are millionths of a billionth of a second."

"This is a truly revolutionary technology," stated Trisha Rice, FEI's vice president and general manager of the Materials Science Business Unit. "Until now, the only commercially-released instruments that could look at processes at this time scale were limited to observations of bulk materials. The Tecnai Femto UEM is the first to combine femtosecond time resolution with nanometer spatial resolution, allowing researchers to see the structural changes that occur at the atomic scale in response to the energetic stimuli."

Flannigan added, "The literature already contains a wide variety of UEM applications described over two generations of instrument development in Zewail's lab at Cal Tech since he began this work in 2004. For instance, we looked at the mechanical properties and photoactuation of silicon nitride cantilevers and at the photo-induced heating and expansion of carbon nanotubes. Looking forward, we plan to focus our attention on the development of new applications with important practical value. For example, we want to look at the crystallization of biological macro molecules preparatory to structural analysis, which could lead to important advances in understanding the structure-function relationships of complex living systems."

The Tecnai Femto is a member of FEI's Tecnai family of transmission electron microscopes (TEM). It has been modified to accommodate ultra short laser pulses that stimulate a brief "flash" of photoelectrons from the electron source, and a precisely-timed pulse of laser energy directed at the sample as a stimulus. To achieve the highest temporal resolution when observing reversible processes, the Tecnai Femto UEM operates in stroboscopic mode where a large number of precisely-timed flashes, each containing as few as a single electron, build up a representative image of the sample at a given delay between stimulus and flash. The delay is then adjusted incrementally and another image acquired, resulting ultimately in a sequence of images much like the frames of a motion picture. For irreversible processes, such as fractures, the instrument can be operated in the single pulse mode with many electrons in the pulse, but unlike the femtosecond single-electron mode, the time resolution reaches picoseconds to nanoseconds because of Coulomb repulsion. Importantly, the instrument can also be operated in conventional continuous-beam TEM mode.

For more information about the Tecnai Femto UEM, please visit www.fei.com/tecnai-femto.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enables customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,500 employees and sales and service operations in more than 50 countries around the world.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the Tecnai Femto UEM. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship and deliver the tools or software as expected, failure of the product or technology to perform as expected and achieve anticipated results or cost savings, unexpected technology problems and challenges, changes to the technology, the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results, and the inability of the customer to develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Imaging

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Tools

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Patents/IP/Tech Transfer/Licensing

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Leti’s Si310 Platform April 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

New-Contracts/Sales/Customers

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella April 3rd, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Solid State Laser manufacturer Lasertel Inc. purchases an Oxford Instruments ICPCVD advanced deposition solution for improved device performance November 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project