Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Have iPod, will test for drug toxicity: Rice students help Houston-based startup create drug toxicity app

N3D's technology grows 3-D cell cultures using magnetic levitation. The technology relies on inert, nontoxic magnetic nanoparticles that attach to living cells. Magnets can then be used lift and suspend the cell cultures as they grow.
CREDIT: Nano3D Biosciences
N3D's technology grows 3-D cell cultures using magnetic levitation. The technology relies on inert, nontoxic magnetic nanoparticles that attach to living cells. Magnets can then be used lift and suspend the cell cultures as they grow.

CREDIT: Nano3D Biosciences

Abstract:
Accurate and rapid testing for drug toxicity just became easier, thanks to a half-dozen Rice University student interns working at Houston-based startup Nano3D Biosciences (n3D).

Have iPod, will test for drug toxicity: Rice students help Houston-based startup create drug toxicity app

Houston, TX | Posted on October 29th, 2013

The bioengineering and nanoscale physics students just wrapped up a yearlong effort to aid the company in developing a new method for conducting high-throughput, in vitro cytotoxicity assays. A research paper about the new method was published this month in Nature's open-access journal Scientific Reports.

"This would not have been possible without the students," said Glauco Souza, n3D's president and chief scientific officer. "They helped develop the scientific protocols and hardware for this, and they wrote both the iPod app and the analytic software."

The new assay method, which n3D has dubbed the "BiO Assay," uses a free iPod app to collect time-lapse images of 3-D cell cultures that have been exposed to varying levels of a drug. Those images are then fed through an analytical program that measures each sample and creates time-lapse movies, graphs and charts of the drug's cytotoxic profile.

"This literally collects about 100,000 data points during a 12-hour, overnight experiment," said study co-author Shane Neeley, a Rice bioengineering graduate student who has interned at n3D for nine months. "That's all relevant publishable data that relate to the different times, doses and cell types and other key variables in the experiment."

Souza and Rice faculty members Tom Killian and Robert Raphael co-founded n3D in 2008 based on technology they created to grow 3-D cell cultures using magnetic levitation. The technology relies on inert, nontoxic magnetic nanoparticles that attach to living cells. Magnets can then be used to lift and suspend the cells as they grow and divide.

The research is part of a growing trend to create better lab techniques for testing drug toxicity. At issue is the fact that the toxic side effects of many new drugs are discovered only during human clinical testing, which means tests on 2-D cell cultures and on lab animals failed to identify the toxicity risk in humans. Cells grown in 3-D cultures behave more like the body's native tissues, and scientists have scrambled to find ways of using 3-D cultures to reduce the need for animal testing and to rule out toxic drug candidates earlier.

"It's been estimated that improving the accuracy of early cytotoxicity screenings by even 10 percent could save drug companies as much as $100 million per drug," said study co-author Hubert Tseng '13, n3D's senior research scientist. Tseng, who interned with the company prior to earning his Ph.D. in bioengineering in March, played an instrumental role in developing several of the company's products, including the BiO Assay.

Souza said the company developed the BiO Assay out of necessity; Interns in the lab were spending hour after hour snapping photos of individual cell cultures on the microscope. Each experiment involved exposing a hundreds of cell cultures to varying doses of a drug. The microscopic images revealed how much smaller the culture became over time, as the toxic drug slowly killed off the cells in the colony. Each culture was grown in its own tiny chamber on standard plates that each contained 96 chambers.

"Without looking in the microscope, just looking at the camera and clicking like a robot, it would take 20 minutes to take pictures of all 96 wells on one plate," Souza said. "To analyze that, all 96, with a ruler, took even longer."

Study first authors David Timm '12 and Jianbo Chen '13, professional masters students in nanoscale physics, had to repeat that tedious process over and over, as often as possible, on dozens of 96-well plates that were being used in multiple experiments.

"We decided there had to be a better way, so we began experimenting with using an iPod," Souza said. "It was promising, but none of the available apps worked very well, so we decided we needed to make our own. I called Apple and asked them to give me the name of a developer here in Houston. When they heard where I was, they said, 'Don't (hire a developer). Go to Rice University and get a couple of students instead. You'll get a better app, and it will do exactly what you want.'"

Study co-author William Haisler '12 created the iPod app, which can snap photos every few seconds for days at a time. Neeley wrote analytical software processes the images Additional study co-authors include Killian, professor and chair of physics and astronomy; Raphael, professor of bioengineering; former Rice undergraduate David Sing '11; Jacob Gage of n3D; and Mehdi Dehghani and Kevin Rosenblatt, both of the University of Texas Health Science Center at Houston. The research was supported by the National Science Foundation's Small Business Innovation Research program and the Texas Emerging Technology Fund.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the paper from Scientific Reports is available at:

Related News Press

News and information

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Videos/Movies

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Going with the flow January 16th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

Software

FLEX™ from CRAIC Technologies: a Flexible UV-visible-NIR Microspectrophotometer Concept January 2nd, 2015

Spectral Surface Mapping with Microscopic Resolution: CRAIC Technologies introduces Spectral Surface Mapping™ (S2M™) software November 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Nanomedicine

Nanoliposomes Help Efforts to Cure Bacterial Infections January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Discoveries

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Announcements

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NREL Scientist Brian Gregg Named AAAS Fellow: Gregg honored for distinguished contributions to the field of organic solar photoconversion January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE