Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Using Data Science Tools to Discover New Nanostructured Materials

Abstract:
Researchers at Columbia Engineering, led by Chemical Engineering Professors Venkat Venkatasubramanian and Sanat Kumar, have developed a new approach to designing novel nanostructured materials through an inverse design framework using genetic algorithms. The study, published in the October 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS), is the first to demonstrate the application of this methodology to the design of self-assembled nanostructures, and shows the potential of machine learning and "big data" approaches embodied in the new Institute for Data Sciences and Engineering at Columbia.

Using Data Science Tools to Discover New Nanostructured Materials

New York, NY | Posted on October 28th, 2013

"Our framework can help speed up the materials discovery process," says Venkatasubramanian, Samuel Ruben-Peter G. Viele Professor of Engineering, and co-author of the paper. "In a sense, we are leveraging how nature discovers new materials—the Darwinian model of evolution—by suitably marrying it with computational methods. It's Darwin on steroids!"

Using a genetic algorithm they developed, the researchers designed DNA-grafted particles that self-assembled into the crystalline structures they wanted. Theirs was an "inverse" way of doing research. In conventional research, colloidal particles grafted with single-stranded DNA are allowed to self-assemble, and then the resulting crystal structures are examined. "Although this Edisonian approach is useful for a posteriori understanding of the factors that govern assembly," notes Kumar, Chemical Engineering Department Chair and the study's co-author, "it doesn't allow us to a priori design these materials into desired structures. Our study addresses this design issue and presents an evolutionary optimization approach that was not only able to reproduce the original phase diagram detailing regions of known crystals, but also to elucidate previously unobserved structures."

The researchers are using "big data" concepts and techniques to discover and design new nanomaterials—a priority area under the White House's Materials Genome Initiative—using a methodology that will revolutionize materials design, impacting a broad range of products that affect our daily lives, from drugs and agricultural chemicals such as pesticides or herbicides to fuel additives, paints and varnishes, and even personal care products such as shampoo.

"This inverse design approach demonstrates the potential of machine learning and algorithm engineering

approaches to challenging problems in materials science," says Kathleen McKeown, director of the Institute for Data Sciences and Engineering and Henry and Gertrude Rothschild Professor of Computer Science. "At the Institute, we are focused on pioneering such advances in a number problems of great practical importance in engineering."

Venkatasubramanian adds, "Discovering and designing new advanced materials and formulations with desired properties is an important and challenging problem, encompassing a wide variety of products in industries addressing clean energy, national security, and human welfare." He points out that the traditional Edisonian trial-and-error discovery approach is time-consuming and costly—it can cause major delays in time-to-market as well as miss potential solutions. And the ever-increasing amount of high-throughput experimentation data, while a major modeling and informatics challenge, has also created opportunities for material design and discovery.

The researchers built upon their earlier work to develop what they call an evolutionary framework for the automated discovery of new materials. Venkatasubramanian proposed the design framework and analyzed the results, and Kumar developed the framework in the context of self-assembled nanomaterials. Babji Srinivasan, a postdoc with Venkatasubramanian and Kumar and now an assistant professor at IIT Gandhinagar, and Thi Vo, a PhD candidate at Columbia Engineering, carried out the computational research. The team collaborated with Oleg Gang and Yugang Zhang of Brookhaven National Laboratory, who carried out the supporting experiments.

The team plans to continue exploring the design space of potential ssDNA-grafted colloidal nanostructures, improving its forward models, and bring in more advanced machine learning techniques. "We need a new paradigm that increases the idea flow, broadens the search horizon, and archives the knowledge from today's successes to accelerate those of tomorrow," says Venkatasubramanian.

This research has been funded by a $1.4 million three-year grant from the U.S. Department of Energy.

####

About Columbia Engineering
Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world’s leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society’s more difficult challenges.

For more information, please click here

Contacts:
Holly Evarts
Director
Strategic Communications and Media Relations
347-453-7408 (c)
212-854-3206 (o)

Copyright © Columbia Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Laboratories

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Self Assembly

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Materials/Metamaterials

Sustainable Nanotechnologies Project November 20th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Nanocomposites Strengthen Bone Implants November 13th, 2014

Production of Magnetic Nanoparticles with New Structures in Iran November 13th, 2014

Announcements

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Research partnerships

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE