Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A noble yet simple way to synthesize new metal-free electrocatalysts for oxygen reduction reaction

This graphic depicts the overall scheme for doped graphene oxide.

Credit: UNIST
This graphic depicts the overall scheme for doped graphene oxide.

Credit: UNIST

Abstract:
A Korean research team from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a high performance and stable metal-free electrocatalyst for ORR and the research work was published in a science journal, Nanoscale by the Royal Society of Chemistry (RSC). (Title: "Covalent Functionalization Based Heteroatom Doped Graphene Nanosheet as a Metal-Free Electrocatalysts for Oxygen Reduction Reaction")

A noble yet simple way to synthesize new metal-free electrocatalysts for oxygen reduction reaction

Ulsan, Korea | Posted on October 28th, 2013

Limited availability of fossil fuel and increasing energy demands have stimulated intense research on energy conversion and storage systems. Fuel cells have received considerable attention among the many choices of energy storage systems, owing to their remarkable potential energy density and environmental issues.

Electrocatalysts for oxygen reduction are critical components that may dramatically enhance the performance of fuel cells, which are perceived to be the power for future electric vehicles. For more economical fuel cells, engineers need fast and efficient electrocatalysts which split hydrogen gas to make electricity.

The UNIST research team led by Prof. Byeong-Su Kim from the Interdisciplinary School of Green Energy, UNIST, presented a unique design and characterization of new heteroatom-doped graphene nanosheets prepared through the covalent functionalization of various small organic molecules with a subsequent thermal treatment. This work was proposed and carried out by undergraduate student Minju Park from the Interdisciplinary School of Green Energy, UNIST.

There are many available methods to prepare nitrogen-doped (N-doped) graphene. These approaches successfully introduce nitrogen atoms within the graphene framework. However, many of them require toxic gas precursors, and are unable to control the degree of doping and type of nitrogen functionality.

Herein the UNIST Research team presented a simple approach for chemical functionalization toward heteroatom-dope graphene nanosheets with small organic molecules for use as electrocatalysts for the oxygen reduction reaction.

Here is how the material has been prepared: Graphite oxide powder was prepared from graphite powder with oxidation and exfoliated to give a brown dispersion of graphene oxide (GO) under ultra sonication. Graphene oxide nanosheets have various functional groups on the edge such as carboxylic (-COOH), hydroxyl (-OH), and epoxy (-C-O-C).

When the GO suspension reacted with amines in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a water soluble carbodiimide was usually obtained as the hydrochloride, carboxylic group in GO reacted with amine and formed an amide group. The research team defined it as 'NGOn', which was chemically functionalized graphene oxide. NGOn suspensions were annealed at 800 ℃ for 1h under an argon atmosphere with tube furnace, and nitrogen was doped into the graphene oxide nanosheets with removing oxygen named 'NRGOn'.

Further the UNIST research team demonstrated how the electrochemical performance can be improved by varying the degree and configurations of the nitrogen dopant. Further, they extended the approach toward the introduction of other heteroatoms, such as boron and sulfur, into the graphene nanosheet.

"Nitrogen-doped graphene nanosheets showed superior stability compared to commercial Pt/C catalysts. This approach has also been successfully extended to other heteroatoms such as boron and sulfur on the graphene nanosheets," said Minju Park.

"We envision this study will offer opportunities and insights for further development of hybrid electrocatalysts," said Prof. Kim, presenting future research possibilities.

This research work was supported by the National Research Foundation of Korea (NRF) grant.

####

For more information, please click here

Contacts:
Eunhee Song

82-522-171-224

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project