Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A noble yet simple way to synthesize new metal-free electrocatalysts for oxygen reduction reaction

This graphic depicts the overall scheme for doped graphene oxide.

Credit: UNIST
This graphic depicts the overall scheme for doped graphene oxide.

Credit: UNIST

Abstract:
A Korean research team from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a high performance and stable metal-free electrocatalyst for ORR and the research work was published in a science journal, Nanoscale by the Royal Society of Chemistry (RSC). (Title: "Covalent Functionalization Based Heteroatom Doped Graphene Nanosheet as a Metal-Free Electrocatalysts for Oxygen Reduction Reaction")

A noble yet simple way to synthesize new metal-free electrocatalysts for oxygen reduction reaction

Ulsan, Korea | Posted on October 28th, 2013

Limited availability of fossil fuel and increasing energy demands have stimulated intense research on energy conversion and storage systems. Fuel cells have received considerable attention among the many choices of energy storage systems, owing to their remarkable potential energy density and environmental issues.

Electrocatalysts for oxygen reduction are critical components that may dramatically enhance the performance of fuel cells, which are perceived to be the power for future electric vehicles. For more economical fuel cells, engineers need fast and efficient electrocatalysts which split hydrogen gas to make electricity.

The UNIST research team led by Prof. Byeong-Su Kim from the Interdisciplinary School of Green Energy, UNIST, presented a unique design and characterization of new heteroatom-doped graphene nanosheets prepared through the covalent functionalization of various small organic molecules with a subsequent thermal treatment. This work was proposed and carried out by undergraduate student Minju Park from the Interdisciplinary School of Green Energy, UNIST.

There are many available methods to prepare nitrogen-doped (N-doped) graphene. These approaches successfully introduce nitrogen atoms within the graphene framework. However, many of them require toxic gas precursors, and are unable to control the degree of doping and type of nitrogen functionality.

Herein the UNIST Research team presented a simple approach for chemical functionalization toward heteroatom-dope graphene nanosheets with small organic molecules for use as electrocatalysts for the oxygen reduction reaction.

Here is how the material has been prepared: Graphite oxide powder was prepared from graphite powder with oxidation and exfoliated to give a brown dispersion of graphene oxide (GO) under ultra sonication. Graphene oxide nanosheets have various functional groups on the edge such as carboxylic (-COOH), hydroxyl (-OH), and epoxy (-C-O-C).

When the GO suspension reacted with amines in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a water soluble carbodiimide was usually obtained as the hydrochloride, carboxylic group in GO reacted with amine and formed an amide group. The research team defined it as 'NGOn', which was chemically functionalized graphene oxide. NGOn suspensions were annealed at 800 ℃ for 1h under an argon atmosphere with tube furnace, and nitrogen was doped into the graphene oxide nanosheets with removing oxygen named 'NRGOn'.

Further the UNIST research team demonstrated how the electrochemical performance can be improved by varying the degree and configurations of the nitrogen dopant. Further, they extended the approach toward the introduction of other heteroatoms, such as boron and sulfur, into the graphene nanosheet.

"Nitrogen-doped graphene nanosheets showed superior stability compared to commercial Pt/C catalysts. This approach has also been successfully extended to other heteroatoms such as boron and sulfur on the graphene nanosheets," said Minju Park.

"We envision this study will offer opportunities and insights for further development of hybrid electrocatalysts," said Prof. Kim, presenting future research possibilities.

This research work was supported by the National Research Foundation of Korea (NRF) grant.

####

For more information, please click here

Contacts:
Eunhee Song

82-522-171-224

Copyright © Ulsan National Institute of Science and Technology(UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Graphene/ Graphite

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Energy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

Fuel Cells

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic