Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ASU, Georgia Tech create breakthrough for solar cell efficiency: New atomic layer-by-layer InGaN technology offers perfect crystal

The atomic arrangement at a relaxed InGaN/GaN interface created by layer-by-layer atomic crystal growth is shown. The technique may point to new developments in solar cell efficiency.

Credit: Arizona State University
The atomic arrangement at a relaxed InGaN/GaN interface created by layer-by-layer atomic crystal growth is shown. The technique may point to new developments in solar cell efficiency.

Credit: Arizona State University

Abstract:
Did you know that crystals form the basis for the penetrating icy blue glare of car headlights and could be fundamental to the future in solar energy technology?

Crystals are at the heart of diodes. Not the kind you might find in quartz, formed naturally, but manufactured to form alloys, such as indium gallium nitride or InGaN. This alloy forms the light emitting region of LEDs, for illumination in the visible range, and of laser diodes (LDs) in the blue-UV range.

ASU, Georgia Tech create breakthrough for solar cell efficiency: New atomic layer-by-layer InGaN technology offers perfect crystal

Tempe, AZ and Atlanta, GA | Posted on October 26th, 2013

Research into making better crystals, with high crystalline quality, light emission efficiency and luminosity, is also at the heart of studies being done at Arizona State University by Research Scientist Alec Fischer and Doctoral Candidate Yong Wei in Professor Fernando Ponce's group in the Department of Physics.

In an article recently published in the journal Applied Physics Letters, the ASU group, in collaboration with a scientific team led by Professor Alan Doolittle at the Georgia Institute of Technology, has just revealed the fundamental aspect of a new approach to growing InGaN crystals for diodes, which promises to move photovoltaic solar cell technology toward record-breaking efficiencies.

The InGaN crystals are grown as layers in a sandwich-like arrangement on sapphire substrates. Typically, researchers have found that the atomic separation of the layers varies; a condition that can lead to high levels of strain, breakdowns in growth, and fluctuations in the alloy's chemical composition.

"Being able to ease the strain and increase the uniformity in the composition of InGaN is very desirable," says Ponce, "but difficult to achieve. Growth of these layers is similar to trying to smoothly fit together two honeycombs with different cell sizes, where size difference disrupts a periodic arrangement of the cells."

As outlined in their publication, the authors developed an approach where pulses of molecules were introduced to achieve the desired alloy composition. The method, developed by Doolittle, is called metal-modulated epitaxy. "This technique allows an atomic layer-by-layer growth of the material," says Ponce.

Analysis of the atomic arrangement and the luminosity at the nanoscale level was performed by Fischer, the lead author of the study, and Wei. Their results showed that the films grown with the epitaxy technique had almost ideal characteristics and revealed that the unexpected results came from the strain relaxation at the first atomic layer of crystal growth.

"Doolittle's group was able to assemble a final crystal that is more uniform and whose lattice structures match up…resulting in a film that resembles a perfect crystal," says Ponce. "The luminosity was also like that of a perfect crystal. Something that no one in our field thought was possible."

The ASU and Georgia Tech team's elimination of these two seemingly insurmountable defects (non-uniform composition and mismatched lattice alignment) ultimately means that LEDs and solar photovoltaic products can now be developed that have much higher, efficient performance.

"While we are still a ways off from record-setting solar cells, this breakthrough could have immediate and lasting impact on light emitting devices and could potentially make the second most abundant semiconductor family, III-Nitrides, a real player in the solar cell field," says Doolittle. Doolittle's team at Georgia Tech's School of Electrical and Computer Engineering also included Michael Moseley and Brendan Gunning. A patent is pending for the new technology.

####

For more information, please click here

Contacts:
Margaret Coulombe

480-727-8934

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Why Is Google Making Synthetic Arms? February 1st, 2015

Nanomaterials Used to Reduce Heat Generated by LED Panels February 1st, 2015

Leader Describes Iran's Independence as Root Cause of Bullying Powers' Enmity February 1st, 2015

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Display technology/LEDs/SS Lighting/OLEDs

Nanomaterials Used to Reduce Heat Generated by LED Panels February 1st, 2015

Discoveries

Nanomaterials Used to Reduce Heat Generated by LED Panels February 1st, 2015

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Announcements

Why Is Google Making Synthetic Arms? February 1st, 2015

Nanomaterials Used to Reduce Heat Generated by LED Panels February 1st, 2015

Leader Describes Iran's Independence as Root Cause of Bullying Powers' Enmity February 1st, 2015

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Liquipel Receives US Patent on Environmentally Friendly, Watersafe Treatment of Electronics: U.S. Patent Office Finds Watersafe™ Treatment Covers Cell Phones, Smart Phones, Tablets, Computers and More January 5th, 2015

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Energy

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Research partnerships

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Solar/Photovoltaic

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE