Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists' new approach improves efficiency of solar cells

A quasi-random structure to maximise performance of a thin film silicon solar cell. Credit: Dr Li Juntao
A quasi-random structure to maximise performance of a thin film silicon solar cell.

Credit: Dr Li Juntao

Abstract:
An international team of scientists, led by researchers from the Universities of York and St Andrews, has developed a new method to increase the efficiency of solar cells.

Scientists' new approach improves efficiency of solar cells

Heslington, UK | Posted on October 26th, 2013

The new approach achieves highly efficient broad-band light trapping in thin films, with more light captured in the film in order to maximise absorption and electricity generation.

The research, which is reported in Nature Communications, also involved scientists from Sun Yat-sen University and the GuangDong Polytechnic Normal University, China, and IMEC (Interuniversity MicroElectronics Center), Leuven, Belgium.

The new method builds on research into a class of materials known as quasi-crystals, which offer advantages in terms of the spectrum of light they are able to capture. However, the problem with these structures is that their properties are difficult to tailor towards specific applications as they lack the design tools available with periodic structures such as regular gratings.

To solve this problem, the researchers created a new structure called a quasi-random structure, which combines the rich spatial frequencies associated with quasi-crystals with the high level of control afforded by periodic structures.

Corresponding author Emiliano Martins, from the School of Physics and Astronomy, University of St Andrews, said: "The control of propagating light is a crucial aspect in photonics. Here, we demonstrate that by a careful design of their Fourier spectra, quasi-random nanostructures can achieve such control very efficiently."

Emiliano Martins developed the idea of the quasi-random structure with Dr Thomas F Krauss, an Anniversary Professor in the Department of Physics at the University of York.

Dr Krauss said: "Applying our nanophotonics design ideas to such an important area as solar cells is essential for improving the competitiveness of renewable energy generation."

Calculations for the research into quasi-random cells were conducted by collaborators in China.

Corresponding author Dr Juntao Li, from the State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, China, said: "Other than solar cells, our design can also be used in many light trapping areas, like LED and DFB lasers."

###

The research was supported by the Scottish Universities Physics Alliance (SUPA), the National Key Basic Research Special Foundation, the National Natural Science Foundation of China and Guangdong Natural Science Foundation.

####

For more information, please click here

Contacts:
Caron Lett

44-019-043-22029

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article "Deterministic quasi-random nanostructures for photon control” will be published in Nature Communications DOI: 10.1038/ncomms3665:

Professor Thomas Krauss joined the University of York as one of 16 Chairs established to mark the University’s 50th Anniversary in 2013:

More information on the University of York’s Department of Physics:

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Photonics/Optics/Lasers

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

Research partnerships

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE