Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoscale Engineering Boosts Performance of Quantum Dot Light Emitting Diodes: Making the light at the end of the tunnel more efficient

The quantum dot device structure shown with a transmission electron microscopy (TEM) image of a cross-section of a real device.
The quantum dot device structure shown with a transmission electron microscopy (TEM) image of a cross-section of a real device.

Abstract:
Dramatic advances in the field of quantum dot light emitting diodes (QD-LEDs) could come from recent work by the Nanotechnology and Advanced Spectroscopy team at Los Alamos National Laboratory.

Nanoscale Engineering Boosts Performance of Quantum Dot Light Emitting Diodes: Making the light at the end of the tunnel more efficient

Los Alamos, NM | Posted on October 26th, 2013

Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. They feature near-unity emission quantum yields and narrow emission bands, which result in excellent color purity. The new research aims to improve QD-LEDs by using a new generation of engineered quantum dots tailored specifically to have reduced wasteful charge-carrier interactions that compete with the production of light.

"QD-LEDs can potentially provide many advantages over standard lighting technologies, such as incandescent bulbs, especially in the areas of efficiency, operating lifetime and the color quality of the emitted light," said Victor Klimov of Los Alamos.

Incandescent bulbs, known for converting only 10 percent of electrical energy into light and losing 90 percent of it to heat, are rapidly being replaced worldwide by less wasteful fluorescent light sources. However, the most efficient approach to lighting is direct conversion of electricity into light using electroluminescent devices such as LEDs.

Due to spectrally narrow, tunable emission, and ease of processing, colloidal QDs are attractive materials for LED technologies. In the last decade, vigorous research in QD-LEDs has led to dramatic improvements in their performance, to the point where it nearly meets the requirements for commercial products. One outstanding challenge in the field is the so-called efficiency roll-off (known also as "droop"), that is, the drop in efficiency at high currents.

"This ‘droop' problem complicates achieving practical levels of brightness required especially for lighting applications," said Wan Ki Bae, a postdoctoral researcher on the nanotech team.

By conducting spectroscopic studies on operational QD-LEDs, the Los Alamos researchers have established that the main factor responsible for the reduction in efficiency is an effect called Auger recombination. In this process, instead of being emitted as a photon, the energy from recombination of an excited electron and hole is transferred to the excess charge and subsequently dissipated as heat.

A paper, "Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes" is being published Oct. 25 in Nature Communications. In addition, an overview article on the field of quantum-dot light-emitting diodes and specifically the role of Auger effects appeared in the September Materials Research Society Bulletin, Volume 38, Issue 09, also authored by researchers of the Los Alamos nanotech team.

Not only has this work identified the mechanism for efficiency losses in QD-LEDs, Klimov said, but it has also demonstrated two different nano-engineering strategies for circumventing the problem in QD-LEDs based on bright quantum dots made of cadmium selenide cores overcoated with cadmium sulfide shells.

The first approach is to reduce the efficiency of Auger recombination itself, which can be done by incorporating a thin layer of cadmium selenide sulfide alloy at the core/shell interface of each quantum dot.

The other approach attacks the problem of charge imbalance by better controlling the flow of extra electrons into the dots themselves. This can be accomplished by coating each dot in a thin layer of zinc cadmium sulfide, which selectively impedes electron injection. According to Jeffrey Pietryga, a chemist in the nanotech team, "This fine tuning of electron and hole injection currents helps maintain the dots in a charge-neutral state and thus prevents activation of Auger recombination."

These studies were funded by a grant from the U.S. Department of Energy Office of Science.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Quantum Dots/Rods

Researchers create quantum dots with single-atom precision June 30th, 2014

New Los Alamos Approach May Be Key to Quantum Dot Solar Cells With Real Gains in Efficiency: Nanoengineering Boosts Carrier Multiplication in Quantum Dots June 19th, 2014

MIPT-based researcher predicts new state of matter June 17th, 2014

Technology using microwave heating may impact electronics manufacture June 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE