Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbodeon thermally-conductive polymer gives 25 percent performance increase: Nanodiamonds in minute quantities exploit diamond properties while keeping costs low for electronics and LED applications

Abstract:
Carbodeon has developed a thermal filler using nanodiamonds that increases the conductivity of thermally conductive polymers by 25 percent, providing significant performance increases for polymers used in electronics and LED manufacture.

Carbodeon thermally-conductive polymer gives 25 percent performance increase: Nanodiamonds in minute quantities exploit diamond properties while keeping costs low for electronics and LED applications

Vantaa, Finland | Posted on October 25th, 2013

Starting with a polyamide 66 (PA66) reference material containing 45 percent by weight of boron nitride as the thermal filler, Carbodeon created a new material using 44.9 percent boron nitride and 0.1% of its uDiamond® nanodiamond powder. The thermal conductivity of the PA66 increased by 25 percent, averaged across all planes.

The increase in thermal conductivity is achieved without affecting the electrical insulation or other mechanical properties of the material, making it an ideal choice for a wide range of electronics and LED applications.

Carbodeon CTO Vesa Myllymäki said: "The performance improvements achieved by this filler are derived from the extremely high thermal conductivity of diamond, at around 2000 W/mK. The key development made by Carbodeon is to tune the surface chemistry of the diamond particles and mixing process to develop a nano-composite in which the diamond is very well interfaced to the polymer molecules."

The active surface chemistry inherent in detonation-synthesised nanodiamonds has historically presented difficulties in application of these promising 4-6 nm particles, making them prone to agglomeration. Carbodeon tunes that surface chemistry so that the particles are driven to disperse and to become consistently integrated throughout parent materials, especially polymers. The much-promised properties of diamond can thus be imparted to other materials with very low, and hence economic, concentrations.

Myllymäki added: "Through Carbodeon technology, really effective improvements to several physical properties can be made with the addition of small quantities of nanodiamond. We are developing a range of customer applications and are always interested to show manufacturers what benefits can be achieved. We know we have not yet uncovered all the benefits that Carbodeon nanodiamonds can deliver, and are always excited by engaging with customers to investigate new challenges."

####

About Carbodeon Ltd
Carbodeon supplies super hard materials for applications where toughness is at a premium. Its patented technologies offer superior opportunities to several fields of business. Its grades of Ultra-Dispersed Diamonds -– also known as NanoDiamonds – possess the desired properties fine-tuned for a growing number of dedicated applications. These grades are sold under the name uDiamond®. Similarly, the company’s Nicanite® graphitic carbon nitride can be converted to carbon nitride thin-film coatings with unique properties.

For more information, please click here

Contacts:
Camille Closs
+44 (0)20 8286 0654
Watch PR

Copyright © Carbodeon Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Thin films

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Chip Technology

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project