Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A thermoelectric materials emulator: Behavior of thermoelectric materials simulated

Part of the optical system used to trap and manipulate atoms. The arrangement of mirrors and lenses brings the a large number of laser beams onto the atoms. Photo : Jean-Philippe Brantut / ETH Zurich
Part of the optical system used to trap and manipulate atoms. The arrangement of mirrors and lenses brings the a large number of laser beams onto the atoms.

Photo : Jean-Philippe Brantut / ETH Zurich

Abstract:
Discovered in the 19th century, thermoelectric materials have the remarkable property that heating them creates a small electrical current. But enhancing this current to a level compatible with the needs of modern technologies has revealed an extraordinary challenge for scientists of the last decades, despite important theoretical and experimental efforts. Now a novel approach could lead to substantial progress. At ETH Zurich the quantum optics group of Tilman Esslinger has created a key model to better understand the fundamental phenomena - "a thermoelectric material emulator".

A thermoelectric materials emulator: Behavior of thermoelectric materials simulated

Zurich, Switzerland | Posted on October 24th, 2013

It happened almost by chance: In Zurich group member Jean-Philippe Brantut and his colleagues had just set up a new experiment when visiting professor Antoine Georges from the Collège de France and University of Geneva had a look at the laboratory and was thrilled. "We didn't really think that in our experiment we could have efficient thermoelectricity", remembers Jean-Philippe Brantut, "but then he told us, that our setup was extremely interesting, something he and his colleagues Corinna Kollath (University of Bonn) and Charles Grenier (Ecole Polytechnique - CNRS) had been looking for for years."

Antoine Georges returned the very next day with a bunch of equations to convince the researchers that their experiment was an ideal way to study thermoelectricity. This triggered a fruitful collaboration between theorists in Paris, Bonn and Geneva and experimentalists in Zurich. The results of the international team are now presented in "Science".

From heat to electricity

The generation of electricity from heat usually involves burning a combustible, which then heats a fluid that brings a mechanical turbine into motion, which eventually produces an electrical current. In thermoelectric materials, the entire cycle that is performed by a heat engine occurs naturally. However, this effect is weak and for the materials known so far, the efficiency of thermoelectric generators is much smaller than that of electrical power plants.

At the moment the technology is mainly used for powering space probes like rover Curiosity exploring planet Mars or for small devices like self-powered sensors. But experts expect a wide range of possible applications in the future. In any engine there is a lot of heat wasted. Car companies are already testing different systems to recover energy from the exhaust gas expecting fuel savings of 3 to 5 %. Other consumer applications could be powering mobile phones or watches by body heat. A highly efficient thermoelectric material would be a major source of renewable energy, since heat is usually wasted by human activities.

At ETH the thermoelectric material emulator sits in a vacuum chamber made out of glass. Enclosed is a gas of Lithium atoms. Using lasers the gas is cooled down to very low temperatures close to absolute zero below minus 273 degree Celsius. Under these conditions the atoms in the gas behave like the electrons in a material. To simulate thermoelectricity the atoms are trapped by a set of laser beams. These create a spatially varying structure in which the atoms move like electrons in a material.

A big surprise

Using atoms trapped by lasers to simulate the behavior of complex materials is a well-tested method in Zurich. For the last ten years the ETH quantum optics group has studied superconductors or magnets, and even devices attached to leads and conducting currents. But the researcher didn't expect their new experiment to be such a big success. "With simple ingredients we simulate thermoelectricity that is as high in efficiency as in natural materials", explains Tilman Esslinger, Professor for Quantum Optics. "That was a big surprise."

Although it is still basic research the experiment may have a stronger impact on materials science than the team thought at the beginning. "Our experiment could serve as a kind of benchmark", says Jean-Philippe Brantut who will continue with his research founded by the Swiss National Science Foundation. In the next two years the team will try to bring the original experiment forward in order to study more complex systems. But already now the cold atom emulation shines a new light on thermoelectricity: comparison between theory and experiments, which are often hard for natural materials due to their high complexity, can now be precisely performed on the atoms. Even the effects of defects and disorder in materials have been successfully explored with the cold atom emulator.

With these new findings, the fundamental processes underlying thermoelectricity can be studied in a controlled way. This may help the simulation and design of thermoelectric materials in the future, in particular where experiments on natural materials still lack theoretical interpretation.

####

For more information, please click here

Contacts:
Dr. Jean-Philippe Brantut

41-446-333-954

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: J.P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger and A. Georges: A thermoelectric Heat Engine with Ultra-Cold Atoms, Science, Online Publication Oct 24, 2013, doi: 10.1126/science.1242308.

Related News Press

News and information

Lifeboat Foundation Responds to Largest Ebola Outbreak in History October 2nd, 2014

Iran's Sharif University to Host 4th Conference on Nanostructured Solar Cells October 2nd, 2014

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Discoveries

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Announcements

Lifeboat Foundation Responds to Largest Ebola Outbreak in History October 2nd, 2014

Iran's Sharif University to Host 4th Conference on Nanostructured Solar Cells October 2nd, 2014

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Multifunctional Cotton Fabrics Produced in Iran Using Nanotechnology October 2nd, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Energy

Iran's Sharif University to Host 4th Conference on Nanostructured Solar Cells October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Photonics/Optics/Lasers

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Quantum nanoscience

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE