Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A thermoelectric materials emulator: Behavior of thermoelectric materials simulated

Part of the optical system used to trap and manipulate atoms. The arrangement of mirrors and lenses brings the a large number of laser beams onto the atoms. Photo : Jean-Philippe Brantut / ETH Zurich
Part of the optical system used to trap and manipulate atoms. The arrangement of mirrors and lenses brings the a large number of laser beams onto the atoms.

Photo : Jean-Philippe Brantut / ETH Zurich

Abstract:
Discovered in the 19th century, thermoelectric materials have the remarkable property that heating them creates a small electrical current. But enhancing this current to a level compatible with the needs of modern technologies has revealed an extraordinary challenge for scientists of the last decades, despite important theoretical and experimental efforts. Now a novel approach could lead to substantial progress. At ETH Zurich the quantum optics group of Tilman Esslinger has created a key model to better understand the fundamental phenomena - "a thermoelectric material emulator".

A thermoelectric materials emulator: Behavior of thermoelectric materials simulated

Zurich, Switzerland | Posted on October 24th, 2013

It happened almost by chance: In Zurich group member Jean-Philippe Brantut and his colleagues had just set up a new experiment when visiting professor Antoine Georges from the Collège de France and University of Geneva had a look at the laboratory and was thrilled. "We didn't really think that in our experiment we could have efficient thermoelectricity", remembers Jean-Philippe Brantut, "but then he told us, that our setup was extremely interesting, something he and his colleagues Corinna Kollath (University of Bonn) and Charles Grenier (Ecole Polytechnique - CNRS) had been looking for for years."

Antoine Georges returned the very next day with a bunch of equations to convince the researchers that their experiment was an ideal way to study thermoelectricity. This triggered a fruitful collaboration between theorists in Paris, Bonn and Geneva and experimentalists in Zurich. The results of the international team are now presented in "Science".

From heat to electricity

The generation of electricity from heat usually involves burning a combustible, which then heats a fluid that brings a mechanical turbine into motion, which eventually produces an electrical current. In thermoelectric materials, the entire cycle that is performed by a heat engine occurs naturally. However, this effect is weak and for the materials known so far, the efficiency of thermoelectric generators is much smaller than that of electrical power plants.

At the moment the technology is mainly used for powering space probes like rover Curiosity exploring planet Mars or for small devices like self-powered sensors. But experts expect a wide range of possible applications in the future. In any engine there is a lot of heat wasted. Car companies are already testing different systems to recover energy from the exhaust gas expecting fuel savings of 3 to 5 %. Other consumer applications could be powering mobile phones or watches by body heat. A highly efficient thermoelectric material would be a major source of renewable energy, since heat is usually wasted by human activities.

At ETH the thermoelectric material emulator sits in a vacuum chamber made out of glass. Enclosed is a gas of Lithium atoms. Using lasers the gas is cooled down to very low temperatures close to absolute zero below minus 273 degree Celsius. Under these conditions the atoms in the gas behave like the electrons in a material. To simulate thermoelectricity the atoms are trapped by a set of laser beams. These create a spatially varying structure in which the atoms move like electrons in a material.

A big surprise

Using atoms trapped by lasers to simulate the behavior of complex materials is a well-tested method in Zurich. For the last ten years the ETH quantum optics group has studied superconductors or magnets, and even devices attached to leads and conducting currents. But the researcher didn't expect their new experiment to be such a big success. "With simple ingredients we simulate thermoelectricity that is as high in efficiency as in natural materials", explains Tilman Esslinger, Professor for Quantum Optics. "That was a big surprise."

Although it is still basic research the experiment may have a stronger impact on materials science than the team thought at the beginning. "Our experiment could serve as a kind of benchmark", says Jean-Philippe Brantut who will continue with his research founded by the Swiss National Science Foundation. In the next two years the team will try to bring the original experiment forward in order to study more complex systems. But already now the cold atom emulation shines a new light on thermoelectricity: comparison between theory and experiments, which are often hard for natural materials due to their high complexity, can now be precisely performed on the atoms. Even the effects of defects and disorder in materials have been successfully explored with the cold atom emulator.

With these new findings, the fundamental processes underlying thermoelectricity can be studied in a controlled way. This may help the simulation and design of thermoelectric materials in the future, in particular where experiments on natural materials still lack theoretical interpretation.

####

For more information, please click here

Contacts:
Dr. Jean-Philippe Brantut

41-446-333-954

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: J.P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger and A. Georges: A thermoelectric Heat Engine with Ultra-Cold Atoms, Science, Online Publication Oct 24, 2013, doi: 10.1126/science.1242308.

Related News Press

News and information

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Physics

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Discoveries

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Announcements

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Energy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Photonics/Optics/Lasers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

Quantum nanoscience

CWRU physicists deploy magnetic vortex to control electron spin: Potential technology for quantum computing, keener sensors June 21st, 2016

Neutrons reveal unexpected magnetism in rare-earth alloy June 16th, 2016

Spintronics: Resetting the future of heat assisted magnetic recording June 15th, 2016

NIST's super quantum simulator 'entangles' hundreds of ions June 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic