Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A thermoelectric materials emulator: Behavior of thermoelectric materials simulated

Part of the optical system used to trap and manipulate atoms. The arrangement of mirrors and lenses brings the a large number of laser beams onto the atoms. Photo : Jean-Philippe Brantut / ETH Zurich
Part of the optical system used to trap and manipulate atoms. The arrangement of mirrors and lenses brings the a large number of laser beams onto the atoms.

Photo : Jean-Philippe Brantut / ETH Zurich

Abstract:
Discovered in the 19th century, thermoelectric materials have the remarkable property that heating them creates a small electrical current. But enhancing this current to a level compatible with the needs of modern technologies has revealed an extraordinary challenge for scientists of the last decades, despite important theoretical and experimental efforts. Now a novel approach could lead to substantial progress. At ETH Zurich the quantum optics group of Tilman Esslinger has created a key model to better understand the fundamental phenomena - "a thermoelectric material emulator".

A thermoelectric materials emulator: Behavior of thermoelectric materials simulated

Zurich, Switzerland | Posted on October 24th, 2013

It happened almost by chance: In Zurich group member Jean-Philippe Brantut and his colleagues had just set up a new experiment when visiting professor Antoine Georges from the Collège de France and University of Geneva had a look at the laboratory and was thrilled. "We didn't really think that in our experiment we could have efficient thermoelectricity", remembers Jean-Philippe Brantut, "but then he told us, that our setup was extremely interesting, something he and his colleagues Corinna Kollath (University of Bonn) and Charles Grenier (Ecole Polytechnique - CNRS) had been looking for for years."

Antoine Georges returned the very next day with a bunch of equations to convince the researchers that their experiment was an ideal way to study thermoelectricity. This triggered a fruitful collaboration between theorists in Paris, Bonn and Geneva and experimentalists in Zurich. The results of the international team are now presented in "Science".

From heat to electricity

The generation of electricity from heat usually involves burning a combustible, which then heats a fluid that brings a mechanical turbine into motion, which eventually produces an electrical current. In thermoelectric materials, the entire cycle that is performed by a heat engine occurs naturally. However, this effect is weak and for the materials known so far, the efficiency of thermoelectric generators is much smaller than that of electrical power plants.

At the moment the technology is mainly used for powering space probes like rover Curiosity exploring planet Mars or for small devices like self-powered sensors. But experts expect a wide range of possible applications in the future. In any engine there is a lot of heat wasted. Car companies are already testing different systems to recover energy from the exhaust gas expecting fuel savings of 3 to 5 %. Other consumer applications could be powering mobile phones or watches by body heat. A highly efficient thermoelectric material would be a major source of renewable energy, since heat is usually wasted by human activities.

At ETH the thermoelectric material emulator sits in a vacuum chamber made out of glass. Enclosed is a gas of Lithium atoms. Using lasers the gas is cooled down to very low temperatures close to absolute zero below minus 273 degree Celsius. Under these conditions the atoms in the gas behave like the electrons in a material. To simulate thermoelectricity the atoms are trapped by a set of laser beams. These create a spatially varying structure in which the atoms move like electrons in a material.

A big surprise

Using atoms trapped by lasers to simulate the behavior of complex materials is a well-tested method in Zurich. For the last ten years the ETH quantum optics group has studied superconductors or magnets, and even devices attached to leads and conducting currents. But the researcher didn't expect their new experiment to be such a big success. "With simple ingredients we simulate thermoelectricity that is as high in efficiency as in natural materials", explains Tilman Esslinger, Professor for Quantum Optics. "That was a big surprise."

Although it is still basic research the experiment may have a stronger impact on materials science than the team thought at the beginning. "Our experiment could serve as a kind of benchmark", says Jean-Philippe Brantut who will continue with his research founded by the Swiss National Science Foundation. In the next two years the team will try to bring the original experiment forward in order to study more complex systems. But already now the cold atom emulation shines a new light on thermoelectricity: comparison between theory and experiments, which are often hard for natural materials due to their high complexity, can now be precisely performed on the atoms. Even the effects of defects and disorder in materials have been successfully explored with the cold atom emulator.

With these new findings, the fundamental processes underlying thermoelectricity can be studied in a controlled way. This may help the simulation and design of thermoelectric materials in the future, in particular where experiments on natural materials still lack theoretical interpretation.

####

For more information, please click here

Contacts:
Dr. Jean-Philippe Brantut

41-446-333-954

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: J.P. Brantut, C. Grenier, J. Meineke, D. Stadler, S. Krinner, C. Kollath, T. Esslinger and A. Georges: A thermoelectric Heat Engine with Ultra-Cold Atoms, Science, Online Publication Oct 24, 2013, doi: 10.1126/science.1242308.

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Photonics/Optics/Lasers

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project