Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes

Abstract:
The advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes

Amherst, MA | Posted on October 24th, 2013

Sharp observation by doctoral student Mengmeng Cui in Thomas Russell's polymer science and engineering laboratory at the University of Massachusetts Amherst recently led her to discover how to kinetically trap and control one liquid within another, locking and separating them in a stable system over long periods, with the ability to tailor and manipulate the shapes and flow characteristics of each.

Russell, her advisor, points out that the advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

He says, "It's very, very neat. We've tricked the system into remaining absolutely fixed, trapped in a certain state for as long as we like. Now we can take a material and encapsulate it in a droplet in an unusual shape for a very long time. Any system where I can have co-continuous materials and I can do things independently in both oil and water is interesting and potentially valuable."

Cui, with Russell and his colleague, synthetic chemist Todd Emrick, report their findings in the current issue of Science.

Russell's lab has long been interested in jamming phenomena and kinetically trapped materials, he says. When Cui noticed something unusual in routine experiments, rather than ignore it and start again she decided to investigate further. "This discovery is really a tribute to Cui's observational skills," Russell notes, "that she recognized this could be of importance."

Specifically, the polymer scientists applied an electric field to a system with two liquids to overcome the weak force that stabilizes nanoparticle assemblies at interfaces. Under the influence of the external field, a spherical drop changes shape to an ellipsoid with increased surface area, so it has many more nanoparticles attached to its surface.

When the external field is released, the higher number of surface nanoparticles jam the liquid system, stopping nanoparticle movement like Friday afternoon gridlock on an exit ramp or sand grains stuck in an hourglass, Russell explains. In its jammed state, the nanoparticle-covered droplet retains its ellipsoid shape and still carries many more nanoparticles on its surface, disordered and liquid-like, than it could as a simple spherical drop. This new shape can be permanently fixed. Cui, Russell and Emrick also accomplished the jamming using a mechanical method, stirring.

By generating these jammed nanoparticle surfactants at interfaces, fluid drops of arbitrary shape and size can be stabilized opening applications in fluidics, encapsulation and bicontinuous media for energy applications. Further stabilization is realized by replacing monofunctional ligands with difunctional ones that cross-link the assemblies, the authors note. The ability to generate and stabilize liquids with a prescribed shape poses opportunities for reactive liquid systems, packaging, delivery and storage.

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Microfluidics/Nanofluidics

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Sensors

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Solar/Photovoltaic

September 5th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project