Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes

Abstract:
The advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes

Amherst, MA | Posted on October 24th, 2013

Sharp observation by doctoral student Mengmeng Cui in Thomas Russell's polymer science and engineering laboratory at the University of Massachusetts Amherst recently led her to discover how to kinetically trap and control one liquid within another, locking and separating them in a stable system over long periods, with the ability to tailor and manipulate the shapes and flow characteristics of each.

Russell, her advisor, points out that the advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

He says, "It's very, very neat. We've tricked the system into remaining absolutely fixed, trapped in a certain state for as long as we like. Now we can take a material and encapsulate it in a droplet in an unusual shape for a very long time. Any system where I can have co-continuous materials and I can do things independently in both oil and water is interesting and potentially valuable."

Cui, with Russell and his colleague, synthetic chemist Todd Emrick, report their findings in the current issue of Science.

Russell's lab has long been interested in jamming phenomena and kinetically trapped materials, he says. When Cui noticed something unusual in routine experiments, rather than ignore it and start again she decided to investigate further. "This discovery is really a tribute to Cui's observational skills," Russell notes, "that she recognized this could be of importance."

Specifically, the polymer scientists applied an electric field to a system with two liquids to overcome the weak force that stabilizes nanoparticle assemblies at interfaces. Under the influence of the external field, a spherical drop changes shape to an ellipsoid with increased surface area, so it has many more nanoparticles attached to its surface.

When the external field is released, the higher number of surface nanoparticles jam the liquid system, stopping nanoparticle movement like Friday afternoon gridlock on an exit ramp or sand grains stuck in an hourglass, Russell explains. In its jammed state, the nanoparticle-covered droplet retains its ellipsoid shape and still carries many more nanoparticles on its surface, disordered and liquid-like, than it could as a simple spherical drop. This new shape can be permanently fixed. Cui, Russell and Emrick also accomplished the jamming using a mechanical method, stirring.

By generating these jammed nanoparticle surfactants at interfaces, fluid drops of arbitrary shape and size can be stabilized opening applications in fluidics, encapsulation and bicontinuous media for energy applications. Further stabilization is realized by replacing monofunctional ligands with difunctional ones that cross-link the assemblies, the authors note. The ability to generate and stabilize liquids with a prescribed shape poses opportunities for reactive liquid systems, packaging, delivery and storage.

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project