Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes

Abstract:
The advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

UMass Amherst polymer scientists jam nanoparticles, trapping liquids in useful shapes

Amherst, MA | Posted on October 24th, 2013

Sharp observation by doctoral student Mengmeng Cui in Thomas Russell's polymer science and engineering laboratory at the University of Massachusetts Amherst recently led her to discover how to kinetically trap and control one liquid within another, locking and separating them in a stable system over long periods, with the ability to tailor and manipulate the shapes and flow characteristics of each.

Russell, her advisor, points out that the advance holds promise for a wide range of different applications including in drug delivery, biosensing, fluidics, photovoltaics, encapsulation and bicontinuous media for energy applications and separations media.

He says, "It's very, very neat. We've tricked the system into remaining absolutely fixed, trapped in a certain state for as long as we like. Now we can take a material and encapsulate it in a droplet in an unusual shape for a very long time. Any system where I can have co-continuous materials and I can do things independently in both oil and water is interesting and potentially valuable."

Cui, with Russell and his colleague, synthetic chemist Todd Emrick, report their findings in the current issue of Science.

Russell's lab has long been interested in jamming phenomena and kinetically trapped materials, he says. When Cui noticed something unusual in routine experiments, rather than ignore it and start again she decided to investigate further. "This discovery is really a tribute to Cui's observational skills," Russell notes, "that she recognized this could be of importance."

Specifically, the polymer scientists applied an electric field to a system with two liquids to overcome the weak force that stabilizes nanoparticle assemblies at interfaces. Under the influence of the external field, a spherical drop changes shape to an ellipsoid with increased surface area, so it has many more nanoparticles attached to its surface.

When the external field is released, the higher number of surface nanoparticles jam the liquid system, stopping nanoparticle movement like Friday afternoon gridlock on an exit ramp or sand grains stuck in an hourglass, Russell explains. In its jammed state, the nanoparticle-covered droplet retains its ellipsoid shape and still carries many more nanoparticles on its surface, disordered and liquid-like, than it could as a simple spherical drop. This new shape can be permanently fixed. Cui, Russell and Emrick also accomplished the jamming using a mechanical method, stirring.

By generating these jammed nanoparticle surfactants at interfaces, fluid drops of arbitrary shape and size can be stabilized opening applications in fluidics, encapsulation and bicontinuous media for energy applications. Further stabilization is realized by replacing monofunctional ligands with difunctional ones that cross-link the assemblies, the authors note. The ability to generate and stabilize liquids with a prescribed shape poses opportunities for reactive liquid systems, packaging, delivery and storage.

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Microfluidics/Nanofluidics

Lehigh University researchers unveil engineering innovations at TechConnect 2015: TechConnect is the world's largest accelerator for industry-vetted emerging-technologies ready for commercialization June 11th, 2015

How to cut a vortex into slices: A group of physicists, lead by Olga Vinogradova, professor at the Lomonosov Moscow State University, came up with a way to stir up a liquid in the microchannel June 3rd, 2015

What makes cancer cells spread? New device offers clues May 19th, 2015

Microchip captures clusters of circulating tumor cells -- NIH study May 18th, 2015

Nanomedicine

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Sensors

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Discoveries

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Announcements

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Energy

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project