Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanopore opens new cellular doorway for drug transport

Abstract:
A living cell is built with barriers to keep things out - and researchers are constantly trying to find ways to smuggle molecules in.‬ ‪Professor Giovanni Maglia (Biochemistry, Molecular and Structural Biology, KU Leuven) and his team have engineered a biological nanopore that acts as a selective revolving door through a cell's lipid membrane. The nanopore could potentially be used in gene therapy and targeted drug delivery.‬‬‬‬‬‬‬

Nanopore opens new cellular doorway for drug transport

Leuven, Belgium | Posted on October 23rd, 2013


Nanopore opens new cellular doorway for drug transport

A living cell is built with barriers to keep things out - and researchers are constantly trying to find ways to smuggle molecules in.‬ ‪Professor Giovanni Maglia (Biochemistry, Molecular and Structural Biology, KU Leuven) and his team have engineered a biological nanopore that acts as a selective revolving door through a cell's lipid membrane. The nanopore could potentially be used in gene therapy and targeted drug delivery.‬‬‬‬‬‬‬

All living cells are enclosed by a lipid membrane that separates the interior of the cell from the outside environment. The influx of molecules through the cell membrane is tightly regulated by membrane proteins that act as specific doorways for the trafficking of ions and nutrients. Membrane proteins can also be used by cells as weapons. Such proteins attack a cell by making holes - nanopores - in ‘enemy' cell membranes. Ions and molecules leak from the holes, eventually causing cell death.

‪Researchers are now trying to use nanopores to smuggle DNA or proteins across membranes. Once inside a cell, the DNA molecule could re-programme the cell for a particular action. Professor Maglia explains: "‪We are now able to engineer biological nanopores, but the difficult part is to precisely control the passage of molecules through the nanopores' doorways. We do not want the nanopore to let everything in. Rather, we want to limit entry to specific genetic information in specific cells."
‪Revolving door

Professor Maglia and his team succeeded in engineering a nanopore that works like a revolving door for DNA molecules. "We have introduced a selective DNA revolving door atop of the nanopore. Specific DNA keys in solution hybridise to the DNA door and are transported across the nanopore. A second DNA key on the other side of the nanopore then releases the desired genetic information. A new cycle can then begin with another piece of DNA - as long as it has the correct key. In this way, the nanopore acts simultaneously as a filter and a conveyor belt."

"In other words, we have engineered a selective transport system that can be used in the future to deliver medication into the cell. This could be of particular use in gene therapy, which involves introducing genetic material into degenerated cells in order to disable or re-programme them. It could also be used in targeted drug delivery, which involves administering medication directly into the cell. The possibilities are promising."

####

For more information, please click here

Contacts:
Giovanni Maglia

32-163-27696

Copyright © KU Leuven

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The researchers’ findings were published in a recent edition of Nature Communications:

Related News Press

News and information

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Nanomedicine

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Announcements

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project