Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Physicists 'Entangle' Microscopic Drum's Beat with Electrical Signals

NIST physicist and JILA Fellow Konrad Lehnert (left) and post-doctoral researcher Tauno Palomaki in the JILA laboratory where they “entangled” a microscopic mechanical drum with electrical signals. The micro-drum, just 15 micrometers in diameter and 100 nanometers thick, is chilled and manipulated inside the tall tank.
Credit: Baxley/JILA
NIST physicist and JILA Fellow Konrad Lehnert (left) and post-doctoral researcher Tauno Palomaki in the JILA laboratory where they “entangled” a microscopic mechanical drum with electrical signals. The micro-drum, just 15 micrometers in diameter and 100 nanometers thick, is chilled and manipulated inside the tall tank.

Credit: Baxley/JILA

Abstract:
Extending evidence of quantum behavior farther into the large-scale world of everyday life, physicists at the National Institute of Standards and Technology (NIST) have "entangled"—linked the properties of—a microscopic mechanical drum with electrical signals.

NIST Physicists 'Entangle' Microscopic Drum's Beat with Electrical Signals

Boulder, CO | Posted on October 23rd, 2013

The results confirm that NIST's micro-drum could be used as a quantum memory in future quantum computers, which would harness the rules of quantum physics to solve important problems that are intractable today. The work also marks the first-ever entanglement of a macroscopic oscillator, expanding the range of practical uses of the drum.

Entanglement is a curious feature of the quantum world once believed to occur only at atomic and smaller scales. In recent years, scientists have been finding it in larger systems. Entanglement has technological uses. For instance, it is essential for quantum computing operations such as correcting errors, and for quantum teleportation of data from one place to another.

The experiments, described Oct. 3, 2013, in Science Express,* were performed at JILA, a joint institute of NIST and the University of Colorado Boulder.

NIST introduced the aluminum micro-drum in 2011 and earlier this year suggested it might be able to store data in quantum computers.** The drum—just 15 micrometers in diameter and 100 nanometers thick—features both mechanical properties (such as vibrations) and quantum properties (such as the ability to store and transfer individual quanta of energy).

The drum is part of an electromechanical circuit that can exchange certain quantum states between the waveform of a microwave pulse and vibration in the drum. In the latest JILA experiment, a microwave signal "cooled" the drum to a very low energy level, just one unit of vibration, in a way analogous to some laser-cooling techniques. Then another signal caused the drum's motion to become entangled with a microwave pulse that emerged spontaneously in the system.

The drum stored the quantum information in the form of vibrational energy for at least 10 microseconds, long enough to be useful in experiments. Then the same type of microwave signal that cooled the drum was used to transfer the state stored in the drum to a second microwave pulse.

Researchers measured the properties of the two microwave pulses—specific points on the curves of the travelling waves—and found that the results were strongly correlated over 10,000 repetitions of the experiment. The evidence of quantum entanglement comes from the fact that measuring the first microwave pulse allowed scientists to anticipate the characteristics of the second pulse with greater accuracy than would otherwise be expected. The correlations between the two pulses indicated that the first pulse was entangled with the drum and the second pulse encoded the drum's quantum state.

The results suggest that the drum, in addition to its potential as a quantum memory device, also could be used to generate entanglement in microwaves, to convert one form of quantum information to an otherwise incompatible form, and to sense tiny forces with improved precision.

The research is supported by the National Science Foundation, the Defense Advanced Research Projects Agency and the Gordon and Betty Moore Foundation.

*T.A. Palomaki, J.D. Teufel, R.W. Simmonds and K.W. Lehnert. Entangling mechanical motion with microwave fields. Science Express. Oct. 3, 2013.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

**See 2013 NIST Tech Beat article, "NIST Mechanical Micro-Drum Used as Quantum Memory," at:

Related News Press

Physics

Attosecond physics: A new gateway to the microcosmos May 6th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Laboratories

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

News and information

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Thermometer-like device could help diagnose heart attacks May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Memory Technology

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Quantum Computing

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

New chip architecture may provide foundation for quantum computer: Researchers at the Georgia Tech Research Institute have developed a microfabricated ion trap architecture that holds promise for increasing the density of qubits in future quantum computers May 5th, 2015

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

Discoveries

Attosecond physics: A new gateway to the microcosmos May 6th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Thermometer-like device could help diagnose heart attacks May 6th, 2015

Announcements

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Inkjet printing process for kesterite solar cells May 6th, 2015

Attosecond physics: A new gateway to the microcosmos May 6th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Military

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

No Hogwarts invitation required: Invisibility cloaks move into the real-life classroom: A new solid-state device can demonstrate the physical principles of invisibility cloaks without special equipment or magic spells April 30th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Rice University's Richards-Kortum, Vardi elected to National Academy of Sciences: Bioengineer, computer scientist join elite list of dual-academy members April 29th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project