Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Physicists 'Entangle' Microscopic Drum's Beat with Electrical Signals

NIST physicist and JILA Fellow Konrad Lehnert (left) and post-doctoral researcher Tauno Palomaki in the JILA laboratory where they “entangled” a microscopic mechanical drum with electrical signals. The micro-drum, just 15 micrometers in diameter and 100 nanometers thick, is chilled and manipulated inside the tall tank.
Credit: Baxley/JILA
NIST physicist and JILA Fellow Konrad Lehnert (left) and post-doctoral researcher Tauno Palomaki in the JILA laboratory where they “entangled” a microscopic mechanical drum with electrical signals. The micro-drum, just 15 micrometers in diameter and 100 nanometers thick, is chilled and manipulated inside the tall tank.

Credit: Baxley/JILA

Abstract:
Extending evidence of quantum behavior farther into the large-scale world of everyday life, physicists at the National Institute of Standards and Technology (NIST) have "entangled"—linked the properties of—a microscopic mechanical drum with electrical signals.

NIST Physicists 'Entangle' Microscopic Drum's Beat with Electrical Signals

Boulder, CO | Posted on October 23rd, 2013

The results confirm that NIST's micro-drum could be used as a quantum memory in future quantum computers, which would harness the rules of quantum physics to solve important problems that are intractable today. The work also marks the first-ever entanglement of a macroscopic oscillator, expanding the range of practical uses of the drum.

Entanglement is a curious feature of the quantum world once believed to occur only at atomic and smaller scales. In recent years, scientists have been finding it in larger systems. Entanglement has technological uses. For instance, it is essential for quantum computing operations such as correcting errors, and for quantum teleportation of data from one place to another.

The experiments, described Oct. 3, 2013, in Science Express,* were performed at JILA, a joint institute of NIST and the University of Colorado Boulder.

NIST introduced the aluminum micro-drum in 2011 and earlier this year suggested it might be able to store data in quantum computers.** The drum—just 15 micrometers in diameter and 100 nanometers thick—features both mechanical properties (such as vibrations) and quantum properties (such as the ability to store and transfer individual quanta of energy).

The drum is part of an electromechanical circuit that can exchange certain quantum states between the waveform of a microwave pulse and vibration in the drum. In the latest JILA experiment, a microwave signal "cooled" the drum to a very low energy level, just one unit of vibration, in a way analogous to some laser-cooling techniques. Then another signal caused the drum's motion to become entangled with a microwave pulse that emerged spontaneously in the system.

The drum stored the quantum information in the form of vibrational energy for at least 10 microseconds, long enough to be useful in experiments. Then the same type of microwave signal that cooled the drum was used to transfer the state stored in the drum to a second microwave pulse.

Researchers measured the properties of the two microwave pulses—specific points on the curves of the travelling waves—and found that the results were strongly correlated over 10,000 repetitions of the experiment. The evidence of quantum entanglement comes from the fact that measuring the first microwave pulse allowed scientists to anticipate the characteristics of the second pulse with greater accuracy than would otherwise be expected. The correlations between the two pulses indicated that the first pulse was entangled with the drum and the second pulse encoded the drum's quantum state.

The results suggest that the drum, in addition to its potential as a quantum memory device, also could be used to generate entanglement in microwaves, to convert one form of quantum information to an otherwise incompatible form, and to sense tiny forces with improved precision.

The research is supported by the National Science Foundation, the Defense Advanced Research Projects Agency and the Gordon and Betty Moore Foundation.

*T.A. Palomaki, J.D. Teufel, R.W. Simmonds and K.W. Lehnert. Entangling mechanical motion with microwave fields. Science Express. Oct. 3, 2013.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Laura Ost
303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

**See 2013 NIST Tech Beat article, "NIST Mechanical Micro-Drum Used as Quantum Memory," at:

Related News Press

Physics

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Laboratories

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Memory Technology

A step towards keeping up with Moore's Law: POSTECH researchers develop a novel and efficient fabrication technology for cross-shaped memristor January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

LC.300 Series Nanopositioning Controller from nPoint January 28th, 2016

First all-antiferromagnetic memory device could get digital data storage in a spin January 16th, 2016

Quantum Computing

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

New invention revolutionizes heat transport February 1st, 2016

A new quantum approach to big data January 25th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic