Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST/JQI Team 'Gets the Edge' on Photon Transport in Silicon

In this false-color scanning electron microscope image, the arrow shows the path light takes as it hops between silicon rings along the edge of the chip, successfully avoiding defects – in this case a missing ring.
Credit: NIST
In this false-color scanning electron microscope image, the arrow shows the path light takes as it hops between silicon rings along the edge of the chip, successfully avoiding defects – in this case a missing ring.

Credit: NIST

Abstract:
Scientists have a new way to edge around a difficult problem in quantum physics, now that a research team from the National Institute of Standards and Technology (NIST) and University of Maryland's Joint Quantum Institute (JQI) have proved* their recent theory about how particles of light flow within a novel device they built.

NIST/JQI Team 'Gets the Edge' on Photon Transport in Silicon

Gaithersburg, MD | Posted on October 23rd, 2013

While the problem itself—how to find an easier way to study the quantum Hall effect—may be unfamiliar to many, the team's solution could help computer designers use light instead of electricity to carry information in computer circuits, potentially leading to vast improvements in efficiency.

The quantum Hall effect is observed when there is a magnetic field perpendicular to a flat wire that has electrons flowing through it. The field pushes the electrons over to one side of the wire, so their flow is concentrated along its edge. Although a fairly exotic piece of physics, the quantum Hall effect already has been applied to make better standards for electrical conductance. But the effect is hard to study because measuring it requires stringent lab conditions, including extremely low temperatures and samples of exceptional purity.

The team looked for a way around these issues, and in 2011 they found** a potential, albeit theoretical, answer: Build a model system in which particles of light behave exactly like electrons do when subjected to the quantum Hall effect, and study that system instead.

"We knew building an analogous system that uses photons would have additional advantages," says NIST physicist Mohammad Hafezi. "Light can carry much more information than electricity, so working with a photon-based system also could help us design computer components that use light."

To test their theory, the team built an array of tiny, nearly flat silicon rings atop an oxide surface. Beaming photons of the right wavelength at one of the rings makes these photons loop around the ring many times. The rings—which look like 25-micrometer wide racetracks—sit about 150 nanometers from one another, close enough that a photon in one ring can hop to an adjacent one. If a ring happens to be defective—which can and does happen in the fabrication process—the photon instead hops to another ring, but eventually finds its way back to the edge of the array, where it continues traveling. Thus the device transports photons from one place to another even if some of the rings don't function, a key point for manufacturers, who will want devices that work even if they are not physically flawless.

But why go through the trouble of making the photons go ring-hopping? Hafezi says the rings encourage the photons to travel only along the edge of the array instead of taking a path through its midsection—just like electrons experiencing the quantum Hall effect do in a conductor. The secret, he says, lies in the rings' arrangement and its peculiar effect on the photons.

"Our theory showed the topology of the ring array would create the effect we wanted, and our experiment confirms it," Hafezi says. "We now have a robust silicon device that can transport photons at room temperature. We hope it will prove useful for both fundamental studies of physics as well as practical component design."

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*M. Hafezi, S. Mittal, J. Fan, A. Migdall and J.M. Taylor. Imaging topological edge states in silicon photonics. Nature Photonics, doi:10.1038/nphoton.2013.274, Oct. 20, 2013:

**See the Aug. 30, 2011, Tech Beat story, "Better 'Photon Loops' May Be Key to Computer and Physics Advances," at:

Related News Press

Physics

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Laboratories

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Quantum nanoscience

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

UAB researchers design the most precise quantum thermometer to date: The device would be capable of measuring the temperature of a cell's interior June 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project