Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST/JQI Team 'Gets the Edge' on Photon Transport in Silicon

In this false-color scanning electron microscope image, the arrow shows the path light takes as it hops between silicon rings along the edge of the chip, successfully avoiding defects – in this case a missing ring.
Credit: NIST
In this false-color scanning electron microscope image, the arrow shows the path light takes as it hops between silicon rings along the edge of the chip, successfully avoiding defects – in this case a missing ring.

Credit: NIST

Abstract:
Scientists have a new way to edge around a difficult problem in quantum physics, now that a research team from the National Institute of Standards and Technology (NIST) and University of Maryland's Joint Quantum Institute (JQI) have proved* their recent theory about how particles of light flow within a novel device they built.

NIST/JQI Team 'Gets the Edge' on Photon Transport in Silicon

Gaithersburg, MD | Posted on October 23rd, 2013

While the problem itself—how to find an easier way to study the quantum Hall effect—may be unfamiliar to many, the team's solution could help computer designers use light instead of electricity to carry information in computer circuits, potentially leading to vast improvements in efficiency.

The quantum Hall effect is observed when there is a magnetic field perpendicular to a flat wire that has electrons flowing through it. The field pushes the electrons over to one side of the wire, so their flow is concentrated along its edge. Although a fairly exotic piece of physics, the quantum Hall effect already has been applied to make better standards for electrical conductance. But the effect is hard to study because measuring it requires stringent lab conditions, including extremely low temperatures and samples of exceptional purity.

The team looked for a way around these issues, and in 2011 they found** a potential, albeit theoretical, answer: Build a model system in which particles of light behave exactly like electrons do when subjected to the quantum Hall effect, and study that system instead.

"We knew building an analogous system that uses photons would have additional advantages," says NIST physicist Mohammad Hafezi. "Light can carry much more information than electricity, so working with a photon-based system also could help us design computer components that use light."

To test their theory, the team built an array of tiny, nearly flat silicon rings atop an oxide surface. Beaming photons of the right wavelength at one of the rings makes these photons loop around the ring many times. The rings—which look like 25-micrometer wide racetracks—sit about 150 nanometers from one another, close enough that a photon in one ring can hop to an adjacent one. If a ring happens to be defective—which can and does happen in the fabrication process—the photon instead hops to another ring, but eventually finds its way back to the edge of the array, where it continues traveling. Thus the device transports photons from one place to another even if some of the rings don't function, a key point for manufacturers, who will want devices that work even if they are not physically flawless.

But why go through the trouble of making the photons go ring-hopping? Hafezi says the rings encourage the photons to travel only along the edge of the array instead of taking a path through its midsection—just like electrons experiencing the quantum Hall effect do in a conductor. The secret, he says, lies in the rings' arrangement and its peculiar effect on the photons.

"Our theory showed the topology of the ring array would create the effect we wanted, and our experiment confirms it," Hafezi says. "We now have a robust silicon device that can transport photons at room temperature. We hope it will prove useful for both fundamental studies of physics as well as practical component design."

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*M. Hafezi, S. Mittal, J. Fan, A. Migdall and J.M. Taylor. Imaging topological edge states in silicon photonics. Nature Photonics, doi:10.1038/nphoton.2013.274, Oct. 20, 2013:

**See the Aug. 30, 2011, Tech Beat story, "Better 'Photon Loops' May Be Key to Computer and Physics Advances," at:

Related News Press

News and information

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Laboratories

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Physics

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Discoveries

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Photonics/Optics/Lasers

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Quantum nanoscience

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project