Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST/JQI Team 'Gets the Edge' on Photon Transport in Silicon

In this false-color scanning electron microscope image, the arrow shows the path light takes as it hops between silicon rings along the edge of the chip, successfully avoiding defects – in this case a missing ring.
Credit: NIST
In this false-color scanning electron microscope image, the arrow shows the path light takes as it hops between silicon rings along the edge of the chip, successfully avoiding defects – in this case a missing ring.

Credit: NIST

Abstract:
Scientists have a new way to edge around a difficult problem in quantum physics, now that a research team from the National Institute of Standards and Technology (NIST) and University of Maryland's Joint Quantum Institute (JQI) have proved* their recent theory about how particles of light flow within a novel device they built.

NIST/JQI Team 'Gets the Edge' on Photon Transport in Silicon

Gaithersburg, MD | Posted on October 23rd, 2013

While the problem itself—how to find an easier way to study the quantum Hall effect—may be unfamiliar to many, the team's solution could help computer designers use light instead of electricity to carry information in computer circuits, potentially leading to vast improvements in efficiency.

The quantum Hall effect is observed when there is a magnetic field perpendicular to a flat wire that has electrons flowing through it. The field pushes the electrons over to one side of the wire, so their flow is concentrated along its edge. Although a fairly exotic piece of physics, the quantum Hall effect already has been applied to make better standards for electrical conductance. But the effect is hard to study because measuring it requires stringent lab conditions, including extremely low temperatures and samples of exceptional purity.

The team looked for a way around these issues, and in 2011 they found** a potential, albeit theoretical, answer: Build a model system in which particles of light behave exactly like electrons do when subjected to the quantum Hall effect, and study that system instead.

"We knew building an analogous system that uses photons would have additional advantages," says NIST physicist Mohammad Hafezi. "Light can carry much more information than electricity, so working with a photon-based system also could help us design computer components that use light."

To test their theory, the team built an array of tiny, nearly flat silicon rings atop an oxide surface. Beaming photons of the right wavelength at one of the rings makes these photons loop around the ring many times. The rings—which look like 25-micrometer wide racetracks—sit about 150 nanometers from one another, close enough that a photon in one ring can hop to an adjacent one. If a ring happens to be defective—which can and does happen in the fabrication process—the photon instead hops to another ring, but eventually finds its way back to the edge of the array, where it continues traveling. Thus the device transports photons from one place to another even if some of the rings don't function, a key point for manufacturers, who will want devices that work even if they are not physically flawless.

But why go through the trouble of making the photons go ring-hopping? Hafezi says the rings encourage the photons to travel only along the edge of the array instead of taking a path through its midsection—just like electrons experiencing the quantum Hall effect do in a conductor. The secret, he says, lies in the rings' arrangement and its peculiar effect on the photons.

"Our theory showed the topology of the ring array would create the effect we wanted, and our experiment confirms it," Hafezi says. "We now have a robust silicon device that can transport photons at room temperature. We hope it will prove useful for both fundamental studies of physics as well as practical component design."

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*M. Hafezi, S. Mittal, J. Fan, A. Migdall and J.M. Taylor. Imaging topological edge states in silicon photonics. Nature Photonics, doi:10.1038/nphoton.2013.274, Oct. 20, 2013:

**See the Aug. 30, 2011, Tech Beat story, "Better 'Photon Loops' May Be Key to Computer and Physics Advances," at:

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Physics

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Laboratories

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Researchers synthesize material for efficient plasmonic devices in mid-infrared range February 16th, 2015

New design tool for metamaterials: Berkeley Lab study shows how to predict metamaterial nonlinear optical properties February 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Photonics/Optics/Lasers

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Quantum nanoscience

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE