Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Stealth nanoparticles lower drug-resistant tumors' defenses

A layered nanoparticle with an anticancer drug core, a gene-silencing inner layer and a tumor-targeting outer layer could provide a new way to attack drug-resistant cancer cells.
Credit: American Chemical Society
A layered nanoparticle with an anticancer drug core, a gene-silencing inner layer and a tumor-targeting outer layer could provide a new way to attack drug-resistant cancer cells.

Credit: American Chemical Society

Abstract:
Some of the most dangerous cancers are those that can outmaneuver the very drugs designed to defeat them, but researchers are now reporting a new Trojan-horse approach. In a preliminary study in the journal ACS Nano focusing on a type of breast cancer that is highly resistant to current therapies, they describe a way to sneak small particles into tumor cells, lower their defenses and attack them with drugs, potentially making the therapy much more effective.

Stealth nanoparticles lower drug-resistant tumors' defenses

Washington, DC | Posted on October 23rd, 2013

Paula T. Hammond and colleagues at the Koch Institute of Integrative Cancer Research at MIT note that triple-negative breast cancer (TNBC) is an aggressive disease that is difficult to treat with standard-of-care therapy, and patients' prognoses are poor. These cancer cells evade treatment by ramping up the production of certain proteins that protect tumors from chemotherapy drugs. Interfering with this process could give anticancer drugs a better chance at killing resistant tumors. Recent research into molecules called small interfering RNAs, or siRNAs, is opening doors into possible new treatments using this approach. These molecules can halt the production of particular proteins, so they are ideal candidates for dialing down the levels of protective proteins in tumors. But there are challenges to using siRNAs as part of a cancer therapy, so Hammond's team set out to address them with novel molecular engineering approaches.

They designed a two-stage, "stealth" drug delivery system to attack TNBC cells in mice, often used as stand-ins for humans in research. They created "layer-by-layer" nanoparticles through assembly of components in a certain order around a nano-sized core. An anticancer drug is loaded into the core of the particle, which is then wrapped in a layer of negatively charged siRNA, alternating with positively charged polypeptides, then coated on the outside with a stealthy tumor-targeting shell layer. That layer helps keep the particles in the body long enough for therapy to work. It also allows the particles to specifically bind to TNBC tumor cells. When tested in mice, the nanoparticles targeted the tumors and reduced the levels of protective proteins by nearly 80 percent. With the cancer cells rendered vulnerable, the nanoparticles' anticancer drug payload showed significantly enhanced therapeutic effects and shrunk tumors by 8-fold. The scientists state, "In summary, the results here provide a potential strategy to treat an aggressive and recurrent form of TNBC, as well as a means of adapting this platform to a broad range of controlled multi-drug therapies customizable to the cancer type in a singular nanoparticle delivery system." They also say that the "layer-by-layer" nanoparticle components are biocompatible and biodegradable, which will allow rapid translation into potential clinical benefits.

###

The authors recognize funding from Janssen Pharmaceuticals, Inc., the National Cancer Institute, the National Health and Medical Research Council (Australia) the National Science Foundation and the National Sciences and Engineering Research Council (Canada).

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 163,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Paula T. Hammond, Ph.D.
Koch Institute for Integrative Cancer Research
Department of Chemical Engineering
Massachusetts Institute of Technology
Rm. 76-553
Cambridge, Mass. 02139
Phone: 617-258-7577
Fax: 617-253-8557


Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOWNLOAD FULL-TEXT ARTICLE - "Layer-by-Layer Nanoparticles for Systemic Codelivery of an Anticancer Drug and siRNA for Potential Triple-Negative Breast Cancer Treatment":

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Nanomedicine

Arrowhead Expands Management Team with Appointment of Susan Boynton as Vice President Global Regulatory Affairs October 1st, 2014

Nanobotmodels present metastasis and angiogenesis medical animation October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Alliances/Partnerships/Distributorships

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE