Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanofluids Used to Increase Efficiency of CO2-Removal Process

Abstract:
Iranian researchers from Shiraz University increased the efficiency of adsorption and separation process of carbon dioxide in the designed system at laboratorial scale.

Nanofluids Used to Increase Efficiency of CO2-Removal Process

Tehran, Iran | Posted on October 23rd, 2013

The nanofluids that were used in hollow fiber membranes as solution can be considered appropriate substitute for normal solutions in the removal of acidic gases, specially in gas- sweetening industries.

Gas removal process using hollow fiber membrane is a combination of separation by membrane and chemical absorption process, which is very important nowadays. On the other hand, the use of nanofluids that adsorb carbon dioxide with unique characteristics such as high mechanical and thermal stability, high ability in gas adsorption and storage, easy reduction, and other transfer properties can be a good replacement for the solutions or as additive to the usual solutions to increase the efficiency of carbon dioxide removal.

Ali Golkhar, one of the researchers, believes that the combination of the separation by membrane and the application of nanofluids as the solution in carbon dioxide adsorption was the main objective of the research.

"In this research, mass transfer properties of nanofluids and their adsorption properties in the two-phase contactor hollow fiber membranes were investigated. The effects of various parameters such as the type and the concentration of nanofluids, temperature, and liquid and gas flow rates were studied too. The results showed significant increase in the adsorption of carbon dioxide gas by using nanofluids," he added.

According to Golkhar, the efficiency of carbon dioxide removal for silica nanofluid, specially carbon nanotube, significantly increased in comparison with distilled water. The increase became larger when the concentration of nanoparticles increased. Moreover, the use of carbon nanotubes was more effective than the use of silica nanofluid.

Results of the research have been published in details in January 2011 in Journal of Membrane Science, vol. 433, pp. 17-24.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Industrial

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project