Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study identifies safe delivery system for tricky yet potent anti-cancer cancer compound

This is Santosh Kesari, M.D., Ph.D., director of neuro-oncology at UC San Diego Moores Cancer Center.

Credit: UC San Diego School of Medicine
This is Santosh Kesari, M.D., Ph.D., director of neuro-oncology at UC San Diego Moores Cancer Center.

Credit: UC San Diego School of Medicine

Abstract:
Researchers at the University of California, San Diego School of Medicine have discovered a way to effectively deliver staurosporine (STS), a powerful anti-cancer compound that has vexed researchers for more than 30 years due to its instability in the blood and toxic nature in both healthy and cancerous cells. For the first time, the new method safely delivered STS to mouse tumors, suppressing them with no apparent side effects. The results were published online, October 20, in the International Journal of Nanomedicine.

Study identifies safe delivery system for tricky yet potent anti-cancer cancer compound

San Diego, CA | Posted on October 22nd, 2013

"By itself, staurosporine shows potent activity against a number of cancer cell lines, including chemotherapy-resistant tumors. However, it also harms normal tissue," said senior author Santosh Kesari, MD, PhD, director of neuro-oncology at UC San Diego Moores Cancer Center. "With this study, we have been able to overcome the pharmacokinetic barriers to delivering staurosporine to tumors with the use of liposomes."

STS was originally isolated from the bacterium Streptomyces staurosporeus in 1977. The compound prompts a wide variety of cancer cell types to self-destruct, a process called apoptosis or programmed cell death. In its free form, STS is quickly metabolized and harmful to healthy cells. By trapping STS in tiny spheres called liposomes, Moores Cancer Center researchers have been able to effectively deliver the compound, past healthy tissue, to the tumor, with potent results.

Liposomes are microscopic bubbles made from the same molecules as cell membranes. Researchers use these hollow spheres to deliver therapeutic agents. Anti-cancer drugs can be loaded inside, while disguising agents coat the external membrane surface to hide the cancer-killer from the immune system.

"Staurosporine is able to drive virtually any mammal cell into apoptosis. It is able to uniquely interfere with several cell signaling pathways, even in cancer cell lines that defy frontline chemotherapy agents," said Milan Makale, PhD, a project scientist at UC San Diego Moores Cancer Center. "In the case of treatment-resistant brain, colon or pancreatic cancers, the potency of staurosporine stacks the odds in our favor of improving current treatments and outcomes. With an appropriately engineered liposomal delivery system, we can finally keep the drug in the blood longer, get it into the tumor better, and to a significant degree, spare healthy tissue."

In addition to encapsulating STS in a liposomal delivery system, the researchers developed a technique to increase the efficiency of drug-loading to more than 70 percent, the highest reported for a STS compound.

Drug-loading is the ratio of drug encapsulated by the liposome to the total amount of drug introduced into solution containing liposomes. The boosted loading was achieved by manipulating the pH environment of the cells with a proprietary method developed at Moores Cancer Center to force more STS into the liposomes. This platform technology is currently in the process of being licensed to a biotech company to develop it further for human use.

The effects of the delivery approach were validated with the use of fluorescence to track the STS penetration. The absence of weight loss in the mice confirmed the reduced toxicity.

Contributors to this paper included Rajesh Mukthavaram, Pengfei Jiang, Rohit Saklecha, Dmitri Simberg, Ila Sri Bharati, Natsuko Nomura, Ying Chao, Sandra Pastorino, Sandeep C. Pingle, Valentina Fogal, and Wolf Wrasidlo of UC San Diego Health Sciences.

This work was supported in part by NIH grants (NIH 3P3#0CA23100-25S8) and by the Tuttleman Family Foundation.

####

For more information, please click here

Contacts:
Jackie Carr

619-543-6163

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanomedicine

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project