Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-Cone Textures Generate Extremely "Robust" Water-Repellent Surfaces: Surfaces with differently shaped nanoscale textures may yield improved materials for applications in transportation, energy, and diagnostics

Side view scanning electron microscope image of a silicon surface textured with (a) cylindrical pillars and (b) nanocones.
Side view scanning electron microscope image of a silicon surface textured with (a) cylindrical pillars and (b) nanocones.

Abstract:
When it comes to designing extremely water-repellent surfaces, shape and size matter. That's the finding of a group of scientists at the U.S. Department of Energy's Brookhaven National Laboratory, who investigated the effects of differently shaped, nanoscale textures on a material's ability to force water droplets to roll off without wetting its surface. These findings and the methods used to fabricate such materials-published online October 21, 2013, in Advanced Materials-are highly relevant for a broad range of applications where water-resistance is important, including power generation and transportation.



High-speed video of droplets bouncing off a surface textured with nanocones.

Nano-Cone Textures Generate Extremely "Robust" Water-Repellent Surfaces: Surfaces with differently shaped nanoscale textures may yield improved materials for applications in transportation, energy, and diagnostics

Upton, NY | Posted on October 21st, 2013

"The idea that microscopic textures can impart a material with water-repellent properties has its origins in nature," explained Brookhaven physicist and lead author Antonio Checco. "For example, the leaves of lotus plants and some insects' exoskeletons have tiny-scale texturing designed to repel water by trapping air. This property, called 'superhydrophobicity' (or super-water-hating), enables water droplets to easily roll off, carrying dirt particles along with them."

Mimicking this self-cleaning mechanism of nature is relevant for a wide range of applications, such as non-fouling, anti-icing, and antibacterial coatings. However, engineered superhydrophobic surfaces often fail under conditions involving high temperature, pressure, and humidity-such as automotive and aircraft windshields and steam turbine power generators-when the air trapped in the texture can be prone to escape. So scientists have been looking for schemes to improve the robustness of these surfaces by delaying or preventing air escape.

Creating nanoscale textures

"In principle, the high robustness required for several applications could be achieved with texture features as small as 10 nanometers (billionths of a meter) because the pressure needed for liquid to infiltrate the texture and force the air out increases dramatically with shrinking texture size," explained Checco. "But in practice, it is difficult to shrink the surface texture features while maintaining control over their shape."

"For this work, we have developed a fabrication approach based on self assembly of nanostructures, which lets us precisely control the surface texture geometry over as large an area as we want-in principle, even as large as square meters," Checco said.

The procedure for creating these superhydrophobic nanostructured surfaces, developed in collaboration with scientists at Brookhaven's Center for Functional Nanomaterials (CFN), takes advantage of the tendency of "block copolymer" materials to spontaneously self-organize through a mechanism known as microphase separation. The self-assembly process results in polymer thin films with highly uniform, tunable dimensions of 20 nanometers or smaller. The team used these nanostructured polymer films as templates for creating nanotextured surfaces by combining with thin-film processing methods more commonly used in fabricating electronic devices, for example by selectively etching away parts of the surface to create textured designs.

"This new approach leverages our thin-film processing methods, in order to precisely tailor the surface nanotexture geometry through control of processing conditions," said Brookhaven physicist and co-author Charles Black.
The effect of shape

The scientists created and tested new materials with different nanoscale textures-some decorated with tiny straight-sided cylindrical pillars and some with angle-sided cones. They were also able to control the spacing between these nanoscale features to achieve robust water repellency.

After coating their test materials with a thin film of wax-like material, the scientists measured how water droplets rolled off each surface as they were tilted from vertical to flat positions and compared the behavior with that of untextured solids.

"While we fabricated several different nanotextures that all significantly increased the water repellency, certain shapes performed differently than others," said Brookhaven physicist and co-author Atikur Rahman. The enhanced water-repellency was consistent with earlier studies, including a previous one by Checco and collaborators that showed that air bubbles trapped in the textured surfaces force the water to ball up into drops [http://www.bnl.gov/newsroom/news.php?a=11085]. However, in the current study, the team further showed that cone-shaped nanostructures are significantly better than cylindrical pillars at forcing water droplets to roll off the surface, thus keeping surfaces dry.

"In the case of the cylindrical pillars, as the contact line of the droplet recedes on the textured surface, it can get pinned to the nanotexture, leaving behind a microscopic liquid layer on the pillars' flat tops instead of a perfectly dry substrate," Checco said. "The cone-shaped structures have smaller, pointed tops, likely preventing this effect."

The other important finding was that the water-repelling ability of cone-shaped nanotexturing held up even when water droplets were sprayed onto the surface with a pressurizing syringe. Such pressure could potentially force water into the nanosized pockmarks between the conical or cylindrical pillars, displacing the air bubbles and destroying the water-repelling effect.

The scientists monitored the splashing droplets using a high-speed camera capable of capturing 30,000 frames per second. For the cone-textured surface, "The sprayed droplets splash and eject satellite droplets that spread radially outward while the centermost portion of the original drop flattens out, then recoils, and bounces off the surface," Checco said. "We do not observe any pinned drops at the impact point after the drop has bounced back, indicating that the surface remains water-repellent during the impact at speeds up to 10 meters per second, which is faster than the speed of a falling raindrop."
Next steps

The team is working on extending this technique to other materials, including glass and plastics, and on fabricating surfaces that are also oil-repellent by further tweaking the feature shape.

They are also studying the resistance of different nanotextures to water penetration using intense beams of x-rays available at Brookhaven's National Synchrotron Light Source (NSLS). "The goal is to understand quantitatively how the forced liquid infiltration depends on the texture size and geometry. This will assist the design of even more resilient superhydrophobic coatings," Checco said.

The nanopatterning technique used in this study also enables the design of a wide variety of materials with different texturing-and therefore different water-repelling properties-on different parts of a single surface. This approach could be used, for example, to fabricate nanoscale channels with self-cleaning and low fluid friction properties for diagnostic applications such sensing the presence of DNA, proteins, or biotoxins.

"This result is an excellent example of the type of project that can be done collaboratively with the DOE's Nanoscale Science Research Centers," said Black. "Previously, we have been pursuing similar structures for an entirely different scientific purpose. We are happy to work with Antonio through the CFN User program to help him accomplish his research goals."

This research was funded by the DOE Office of Science.

Brookhaven Science Associates (BSA), the company that manages Brookhaven Lab for the Department of Energy, has filed a U.S. Provisional Patent Application for this technology. For information about licensing the technology from BSA, contact Kimberley Elcess, , (631) 344-4151.

The Center for Functional Nanomaterials is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit science.energy.gov.

The National Synchrotron Light Source (NSLS) provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, and environmental and materials sciences. Supported by the Office of Basic Energy Sciences within the U.S. Department of Energy, the NSLS is one of the world's most widely used scientific facilities. For more information, visit www.nsls.bnl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Robust Superhydrophobicity in Large Area Nanostructured Surfaces Defined by Block Copolymer Self Assemby":

Previous research: Scientists Glimpse Nanobubbles on Super Non-Stick Surfaces:

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Laboratories

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Videos/Movies

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Materials/Metamaterials

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Automotive/Transportation

Glass coating improves battery performance: To improve lithium-sulfur batteries, researchers added glass cage-like coating and graphene oxide March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE