Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iran, US Jointly Produce Non-Viral Medical Nanocarriers Made of Polyethyleneimine

Abstract:
Iranian researchers from Mashhad University of Medical Sciences in association with researchers from the University of Minnesota, the US, succeeded in the production of non-viral medical nanocarriers.

Iran, US Jointly Produce Non-Viral Medical Nanocarriers Made of Polyethyleneimine

Tehran, Iran | Posted on October 21st, 2013

The nanocarriers are made of polyethyleneimine and are at nanometric scale. They can be widely used in pharmaceutical industries, specially in the treatment of cancer.

Dr. Nasim Shahidi Hamedani, one of the researchers, explained about the research, and said, "Lymphocyte cells are strongly resistant to the acceptance of genetic parts from outside the cell. Therefore, gene therapy is very difficult in these cells. A system is considered successful in gene therapy that can overcome problems such as cell entrance, cytoplasm transfer, and transfer into the core in case of plasmid DNA."

"Among other concerns, mention can be made of appropriate physicochemical properties of the set of carrier/nucleic acid in the formulation and also the targeting ability of the desired tissue or cell as well as not entering the cell in non-specific cells. The aim of the research was to synthesize derivatives of polyethyleneimine with various molecular weight and to join cell targeting ligands on them as a new series of systems based on polymer/aptamer in the delivery of nucleic acid."

To this end, nanocarriers based on cationic polymer of polyethyleneimine were produced in the first place and their physical properties, including the ability to hold genetic parts, particles size, surface charges, and adaptability were investigated. Next, aptamers were connected to the cationic polymer as the targeting molecules of surface indices of cancerous cells, and the ability of the final nanocarrier to deliver genetic parts and the prevention of their entrance to non-cancerous cells were studied.

"Some researchers were carried out on prostate cancer cells by using 14 different nanocarriers with structural modifications," Shahidi added.

Results of the research have been published in details in July 2013 in The Journal of Gene Medicine, vol. 15, pp. 261-269.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Research partnerships

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project