Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists prove Heisenberg's intuition correct

Abstract:
An international team of scientists has provided proof of a key feature of quantum physics - Heisenberg's error-disturbance relation - more than 80 years after it was first suggested.

Scientists prove Heisenberg's intuition correct

Heslington, UK | Posted on October 17th, 2013

One of the basic concepts in the world of quantum mechanics is that it is impossible to observe physical objects without affecting them in a significant way; there can be no measurement without disturbance.

In a paper in 1927, Werner Heisenberg, one of the architects of the fundamental theories of modern physics, claimed that this fact could be expressed as an uncertainty relation, describing a reciprocal relation between the accuracy in position and the disturbance in momentum. However, he did not supply any evidence for the theory which was largely based on intuition.

Now Professor Paul Busch of the University of York, UK, Professor Pekka Lahti of the University of Turku, Finland and Professor Reinhard Werner of Leibniz Universitšt Hannover, Germany have finally provided a precise formulation and proof of the error-disturbance relation in an article published today in the journal Physical Review Letters.

Their work has important implications for the developing field of quantum cryptography and computing, as it reaffirms that quantum-encrypted messages can be transmitted securely since an eavesdropper would necessarily disturb the system carrying the message and this could be detected.

Professor Busch, from York's Department of Mathematics, said: "While the slogan 'no measurement without disturbance' has established itself under the name Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary results.

"We have shown that despite recent claims to the contrary, Heisenberg-type inequalities can be proven that describe a trade-off between the precision of a position measurement and the necessary resulting disturbance of momentum and vice-versa."

The research involved the scientists considering how simultaneous measurements of a particle's position and momentum are calibrated. They defined the errors in these measurements as the spreads in the distributions of the outcomes in situations where either the position or the momentum of the particle is well defined. They found that these errors for combined position and momentum measurements obey Heisenberg's principle.

Professor Werner said: "Since I was a student I have been wondering what could be meant by an 'uncontrollable' disturbance of momentum in Heisenberg's Gedanken experiment. In our theorem this is now clear: not only does the momentum change, there is also no way to retrieve it from the post measurement state."

Professor Lahti added: "It is impressive to witness how the intuitions of the great masters from the very early stage of the development of the then brand new theory turn out to be true."

The research was funded by the Academy of Finland, the European Network Simulators and Interfaces with Quantum Systems (SIQS) and COST (European Cooperation in Science and Technology).

####

For more information, please click here

Contacts:
Caron Lett

44-019-043-22029

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project