Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iranian Scientists Improve Abrasive, Wettability Properties of Alumina Nanoparticles

Abstract:
Iranian researchers from Semnan University in association with their colleagues from Malek Ashtar University succeeded in increasing the abrasive and hardness properties of nanocomposites as well as improving wettability of alumina nanoparticles in molten aluminum, its adhesion percentage in solid phase and nanoparticles distribution.

Iranian Scientists Improve Abrasive, Wettability Properties of Alumina Nanoparticles

Tehran, Iran | Posted on October 17th, 2013

To gain desired results, the researchers went through a milling process and produced a primary hybrid powder that contains alumina nanoparticles in addition to aluminum and copper.

Selecting the best and the most available method for the mass production of metallic based nanocomposites is one of the most important challenges in the production of these composites. Casting method is an accepted method that is still being used by researchers although various similar production methods have been investigated. The most important challenge in this method is non-wettability of nanoparticles in the molten metals (such as aluminum and magnesium), which prevents the insertion of nanoparticles to the freezing metallic base.

Mohammad Karbalayee Akbari, one of the researchers, elaborated on the procedure of the plan, and stated, "Vortex casting method was used to produce the composite. In the present study, alumina nanoparticles were firstly and individually milled with the powder of aluminum and copper metals. This way, we obtained a core-shell structure of metallic powders and ceramic nanoparticles. After the production of nanocomposite samples in forms of cylindrical bars and carrying out of thermal operation on the samples, various tests such as hardness, abrasion, and wear strength were carried out on the samples."

Akbari explained about the applications of the results obtained in this research, and said, "This composite product has direct applications in automobile manufacturing industries, aerospace industries, railing industries, ship-making (transportation industries), and military industries. These advanced materials can also be used in electronics, power transference and production, and many other industries in which modified light metals have structural applications."

Results of the research have been published in details in September 2013 in Composite Part B: Engineering, vol. 52, pp. 262-268.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Discoveries

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Materials/Metamaterials

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Research partnerships

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project