Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New “click” reaction: chemistry applicable to living organisms

vignette
vignette

Abstract:
Two CEA-Ibitec-S teams have developed a new "click" chemistry process for specific assembly of two components without modifying their properties or the medium in which the reaction takes place. The process can be carried out under any conditions, whatever the characteristics of the medium. This new click reaction can be used to connect two components (molecules, proteins, nanoparticles, etc.) in biological media as complex as human blood. These results have been published on the Angewandte Chemie website.

New “click” reaction: chemistry applicable to living organisms

Paris, France | Posted on October 16th, 2013

Using an approach based on high-speed screening of thousands of reagent combinations, two Ibitec-S teams have discovered a new reaction meeting all the criteria of what is known as click chemistry:

effective under any reaction conditions;
applicable to biological media;
selective (the reaction must not interfere with satisfactory functioning of the medium).

The reaction developed by the researchers can assemble two components specifically, without altering their properties or their medium. This is accomplished by attaching a particular chemical group to each of the components (two proteins, for example): a dipole called sydnone (heterocyclic chemical group bearing a positive and a negative charge) to one component, an alkyne group (with a triple chemical bond, see figure 1) to the other. These two groups act to "click" the two components together when the click reaction catalyst (copper) is injected into the medium.

Applications

Although chemists have thousands of chemical reactions they can use to build increasingly sophisticated molecular edifices, only a few of these reactions can be used by biologists. Biological media have characteristics (temperature, water, osmotic pressure, etc.) that make it impossible to transpose most chemical reactions to them, even reactions that are fully mastered in vitro. The requirements for a reaction applicable to biological media are particularly restrictive: aqueous medium, ambient temperature, presence of many functional groups (thiols, amines, etc.). Consequently, very few reactions can be used with biological materials.

This reaction can be used to connect two components in biological media as complex as human blood. The potential applications of this new click reaction extend from medicinal chemistry (e.g. attachment of drugs to therapeutic antibodies) to biotechnology (e.g. tracers for medical imaging).


Full bibliographic informationReferences:
Kolodych, S., Rasolofonjatovo, E., Chaumontet, M., Nevers, M.-C., Créminon, C. and Taran, F. (2013), "Discovery of Chemoselective and Biocompatible Reactions Using a High-Throughput Immunoassay Screening". Angew. Chem. Int. Ed.. doi: 10.1002/anie.201305645

Procédé de fabrication de pyrazoles, nouveaux pyrazoles et applications. F. Taran, M. Chaumontet, S. Kolodych, E. Rasolofonjatovo. Fr. Demande N°1351146 (11/02/2013).

####

About Commissariat a l'Energie Atomique (CEA)
The French Atomic Energy Commission (CEA) is a key player in research, development and innovation in the fields of energy, defense, information technologies, communication and health. Ever since it was created in 1945, it has successfully responded to major scientific challenges in many fields, including the French nuclear power generation program, nuclear deterrence, micro- and nanotechnologies, astrophysics, medical imaging, toxicology, biotechnologies, etc.

For more information, please click here

Contacts:
Carolyn Anderson
+33 1-64-50-20-11

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Laboratories

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE