Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Haydale updates on their graphene inks and GNPs, expects products based on graphene inks by early 2014

Abstract:
Back in June 2013, Haydale (owned by ICL from May 2011) announced that it developed metal-free graphene-based inks. Haydale, established in 2003 with strong links with Swansea University, is developing and marketing carbon materials under the HDPlas brand. The company currently focuses on graphene, CNTs and zinc nanomaterials. Ray Gibbs, ICL's Commercial Directory was kind enough to update us on Haydale's new inks and more aspects of their business and technology.

Haydale updates on their graphene inks and GNPs, expects products based on graphene inks by early 2014

Ammanford, UK | Posted on October 15th, 2013

Haydale developed their own Split-Plasma process to convert mined graphite ore into functionalised graphene flakes (nanoplatelets). This scalable and environmentally friendly method is claimed to be significantly quicker and substantially more cost efficient than other methods. Split-Plasma does not damage the materials and can be controlled to provide appropriate functionalisation levels that are not restricted to the chemical groups associated with other "wet" chemistry processing methods. One of its unique characteristics is that the process can (and has) been used to functionalise synthetically produced graphene materials.

Haydale reports that they have supplied graphene materials to over 100 leading research institutions worldwide - and their materials can be used to develop commercial applications in inks, sensors, energy storage, photovoltaics, composites, paints and coatings. Ray says that the key focus appears to be in the flexible printed electronics market.

The company currently has low revenues (under $1 million) but they are growing quickly. The company has received over $5 million in funding from private investors since 2010 and have invested over $1.5 million in their "nano safe" production facilities.

Regarding the company's graphene conductive inks, Haydale says that their inks have excellent performance - with a sheet resistivity of under 10 ohms/sq and a low curing temperature. Those inks were specifically formulated for screen-printing applications but can be adapted to flexographic and gravure printing techniques. While they are not as conductive as silver, they are cheaper and the price is less volatile. It does not oxidize like copper and it will not crack when subject to bending like most metal based inks. The inks therefore lend themselves to flexible printed electronics and with a high surface area can be used in chemical sensor electrodes and give equivalent or improved performance over the industry standard electrode ink.

To summarize, Haydale claims that their inks are:

Conductive and flexible
Curable at low temperatures
Able to be applied to a range of substrates including PVC, polyester and ceramic
Supplied in ready to print formulations
Available in both high volumes and trial quantities
Available with formulation and customization support

The 100 gram research samples cost £200 ($310 USD) or £2,000/kg while the 5 kg sample costs £2,225 ($3,430) or £445/kg. The price for commercial quantities reduces considerably to under $200/kg. Haydale can produce over 20 tons of graphene ink per year.

Ray reports that several large organizations are interested in those inks besides a lot of research institutes. Haydale hopes that products utilizing their graphene inks will appear in the market in spring 2014. You can read more about Haydale's Sc213 graphene ink in the attached brochure.

Regarding the company's GNPs, Haydale currently offers them in research and industrial quantities (from 1 gram to 100 Kg) and can provide them in dry powder, dispersion or integrated into a polymer system.

Finally, I asked Ray about his own view about the graphene market. Ray said that "the key to getting the graphene market going is the supply of quality consistent material at prices that can make a commercial difference, and can achieve performance enhancement either in mechanical, barrier or conductivity properties. To make this happen the material must be matrix compatible and homogeneously disperse - if there are impurities/holes in the materials or inadequate surface functionality (to get a covalent bond) then the user will not switch. Most importantly of all we need a standard definition of what we mean by graphene/few-layered graphene/GNPs/graphite and so on. People sell graphene when it is definitely not single layer and a set of standards will help both buyers and suppliers and provide a comparison which is not available right now - other than (often) price, which is no indicator of performance or quality."

####

About Haydale
Haydale, a wholly owned subsidiary of Innovative Carbon Limited, is a global leader in facilitating the commercial application of graphenes.

For more information, please click here

Contacts:
Company Address:
Clos Fferws, Parc Hendre, Capel Hendre
Ammanford
Carmarthenshire
SA18 3BL
United Kingdom
http://www.haydale.com/

Copyright © graphene-info.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

You can read more about the GNPs in the linked brochure:

To read the original release at graphene-info.com:

Related News Press

News and information

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

VC/Funding/Angel financing/Loans/Leases/Crowdfunding

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

Philadelphia Mathematician Robert Clark Turns to Crowdfunding to Support Nanotechnology Research That Could Lead to ‘Flying’ Cars and Space Elevator April 4th, 2016

Harris & Harris Group Announces Formation of Co-Investment Fund for Accredited Investors March 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Announcements

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Printing/Lithography/Inkjet/Inks

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Penn engineers develop first transistors made entirely of nanocrystal 'inks April 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic