Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rice University mix of graphene nanoribbons, polymer has potential for cars, soda, beer

A composite material created at Rice University is nearly impervious to gas and may lead to efficient storage of compressed natural gas for vehicles. A 65-micrometer-wide polymer film, photographed edge-on with an electron microscope, contains a tiny amount of enhanced graphene nanoribbons that present gas molecules a “tortuous path” to escape.Credit: Changsheng Xiang/Rice University
A composite material created at Rice University is nearly impervious to gas and may lead to efficient storage of compressed natural gas for vehicles. A 65-micrometer-wide polymer film, photographed edge-on with an electron microscope, contains a tiny amount of enhanced graphene nanoribbons that present gas molecules a “tortuous path” to escape.

Credit: Changsheng Xiang/Rice University

Abstract:
A discovery at Rice University aims to make vehicles that run on compressed natural gas more practical. It might also prolong the shelf life of bottled beer and soda.

Rice University mix of graphene nanoribbons, polymer has potential for cars, soda, beer

Houston, TX | Posted on October 10th, 2013

The Rice lab of chemist James Tour has enhanced a polymer material to make it far more impermeable to pressurized gas and far lighter than the metal in tanks now used to contain the gas.

The combination could be a boon for an auto industry under pressure to market consumer cars that use cheaper natural gas. It could also find a market in food and beverage packaging.

Tour and his colleagues at Rice and in Hungary, Slovenia and India reported their results this week in the online edition of the American Chemistry Society journal ACS Nano.

By adding modified, single-atom-thick graphene nanoribbons (GNRs) to thermoplastic polyurethane (TPU), the Rice lab made it 1,000 times harder for gas molecules to escape, Tour said. That's due to the ribbons' even dispersion through the material. Because gas molecules cannot penetrate GNRs, they are faced with a "tortuous path" to freedom, he said.

The researchers acknowledged that a solid, two-dimensional sheet of graphene might be the perfect barrier to gas, but the production of graphene in such bulk quantities is not yet practical, Tour said.

But graphene nanoribbons are already there. Tour's breakthrough "unzipping" technique for turning multiwalled carbon nanotubes into GNRs, first revealed in Nature in 2009, has been licensed for industrial production. "These are being produced in bulk, which should also make containers cheaper," he said.

The researchers led by Rice graduate student Changsheng Xiang produced thin films of the composite material by solution casting GNRs treated with hexadecane and TPU, a block copolymer of polyurethane that combines hard and soft materials. The tiny amount of treated GNRs accounted for no more than 0.5 percent of the composite's weight. But the overlapping 200- to 300-nanometer-wide ribbons dispersed so well that they were nearly as effective as large-sheet graphene in containing gas molecules. The GNRs' geometry makes them far better than graphene sheets for processing into composites, Tour said.

They tested GNR/TPU films by putting pressurized nitrogen on one side and a vacuum on the other side. For films with no GNRs, the pressure dropped to zero in about 100 seconds as nitrogen escaped into the vacuum chamber. With GNRs at 0.5 percent, the pressure didn't budge over 1,000 seconds, and it dropped only slightly over more than 18 hours.

Stress and strain tests also found that the 0.5 percent ratio was optimal for enhancing the polymer's strength.

"The idea is to increase the toughness of the tank and make it impermeable to gas," Tour said. "This becomes increasingly important as automakers think about powering cars with natural gas. Metal tanks that can handle natural gas under pressure are often much heavier than the automakers would like."

He said the material could help to solve long-standing problems in food packaging, too.

"Remember when you were a kid, you'd get a balloon and it would be wilted the next day? That's because gas molecules go through rubber or plastic," Tour said. "It took years for scientists to figure out how to make a plastic bottle for soda. Once, you couldn't get a carbonated drink in anything but a glass bottle, until they figured out how to modify plastic to contain the carbon dioxide bubbles. And even now, bottled soda goes flat after a period of months.

"Beer has a bigger problem and, in some ways, it's the reverse problem," he said. "Oxygen molecules get in through plastic and make the beer go bad." Bottles that are effectively impermeable could lead to brew that stays fresh on the shelf for far longer, Tour said.

###

Co-authors of the paper are Rice graduate students Daniel Hashim, Zheng Yan, Zhiwei Peng, Chih-Chau Hwang, Gedeng Ruan and Errol Samuel; Rice alumnus Paris Cox; Bostjan Genorio, a former postdoctoral researcher at Rice and now an assistant professor at the University of Ljubljana, Slovenia; Akos Kukovecz, an associate professor of chemistry, and Zóltan Kónya, a researcher, both at the University of Szeged, Hungary; Parambath Sudeep, a research scholar at Cochin University of Science and Technology, India; Rice senior faculty fellow Robert Vajtai; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry at Rice. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science at Rice.

The Air Force Research Laboratory through the University Technology Corp., the Office of Naval Research MURI graphene program and the Air Force Office of Scientific Research MURI program supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth

713-348-6327

Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Tour Group:

Rice researchers unzip the future:

Related News Press

News and information

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Discoveries

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Materials/Metamaterials

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Combined effort for structural determination April 15th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

Announcements

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Military

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Energy

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE