Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > BGT launches the world's first graphene based Field Effect Transistor (GFET)

Abstract:
Bluestone Global Tech announced a new groundbreaking product today, the world's first graphene based Field Effect Transistor. BGT's Grat-FET is a wafer with 9 different GFET chips (or FET arrays), each with 64 FETs. Grat-FET is aimed towards research and development work and not for commercial production.

BGT launches the world's first graphene based Field Effect Transistor (GFET)

Wappingers Falls, NY | Posted on October 10th, 2013

BGT's GFETs are fabricated (using CVD) on a silicon wafer covered with a SiO2 layer. The high mobility (2000 cm2/Vs or more) graphene is used as the transistor channel. Each transistor consists of three terminals: source and drain metal electrodes and a global back gate.

Grat-FETs achieve both n-type and p-type transport when biased with a proper gate voltage at the substrate. Each chip contains nine different graphene channel length/width arrangements, which should accommodate different development settings.

####

For more information, please click here

Contacts:
US Headquarters
169 Myers Corners Rd.
Suite #210
Wappingers Falls, NY 12590
P: +1-845-632-6326
F: +1-845-632-6330
E:

Taiwan Office
R307 Incubation Center
Tainan Science Park Rd.
12th Floor
74147 Tainan City, Taiwan
P: +886-06-5055009
F: +886-06-5055010
E:

Copyright © graphene-info.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the original release at graphene-info.com:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project