Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > BGT launches the world's first graphene based Field Effect Transistor (GFET)

Abstract:
Bluestone Global Tech announced a new groundbreaking product today, the world's first graphene based Field Effect Transistor. BGT's Grat-FET is a wafer with 9 different GFET chips (or FET arrays), each with 64 FETs. Grat-FET is aimed towards research and development work and not for commercial production.

BGT launches the world's first graphene based Field Effect Transistor (GFET)

Wappingers Falls, NY | Posted on October 10th, 2013

BGT's GFETs are fabricated (using CVD) on a silicon wafer covered with a SiO2 layer. The high mobility (2000 cm2/Vs or more) graphene is used as the transistor channel. Each transistor consists of three terminals: source and drain metal electrodes and a global back gate.

Grat-FETs achieve both n-type and p-type transport when biased with a proper gate voltage at the substrate. Each chip contains nine different graphene channel length/width arrangements, which should accommodate different development settings.

####

For more information, please click here

Contacts:
US Headquarters
169 Myers Corners Rd.
Suite #210
Wappingers Falls, NY 12590
P: +1-845-632-6326
F: +1-845-632-6330
E:

Taiwan Office
R307 Incubation Center
Tainan Science Park Rd.
12th Floor
74147 Tainan City, Taiwan
P: +886-06-5055009
F: +886-06-5055010
E:

Copyright © graphene-info.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the original release at graphene-info.com:

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Graphene

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Simulations predict flat liquid May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project