Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UT Arlington professor to increase speed, capacity on silicon chips with novel lasers

Weidong Zhou
Weidong Zhou

Abstract:
A UT Arlington electrical engineering professor, funded by a new National Science Foundation grant, is working to harness the power of lasers on silicon chips to increase capacity and speed in computing and communications systems.

UT Arlington professor to increase speed, capacity on silicon chips with novel lasers

Arlington, TX | Posted on October 10th, 2013

Weidong Zhou, a professor of electrical engineering with the UT Arlington Nanotechnology Research Center, said the research will advance the use of lasers on silicon based on the breakthroughs reported by his group on printed photonic crystals membrane lasers on silicon last year in Nature Photonics. His colleague, Zhenqiang Ma at the University of Wisconsin-Madison, is collaborating on the $352,982 grant project.

Low-cost silicon chips are used to efficiently house integrated electronic circuits for information processing in a variety of computer and communications devices. Lasers, by comparison, are traditionally incorporated into compound semiconductor materials to engineer high-capacity optical networks.

Silicon photonics - a popular area of research - seeks to integrate the two.

"Lasers on silicon remain a major roadblock toward making integrated silicon photonics work," Zhou said. "Integrating light or lasers on those silicon chips has the potential to increase capacity, increase speed and lower the energy consumption of what those chips do."

Zhou's technology uses photonic crystals to route laser beams in a method that increases the efficiency of the light on the integrated circuit.

"It's like building construction vertically in New York City because there's nowhere to build horizontally," Zhou said.

The technology could eventually allow designers to place optical links on silicon chips with much less wasted material, time and effort, he said. The research has applications for optical imaging, sensing, bio-integrated electronics, signal processing and data transmission, among other uses.

Khosrow Behbehani, dean of the College of Engineering, said Zhou's work has the potential to positively affect many platforms.

"Every day, we hear about limitations of available space on the Internet, how much faster data transfer must become to remain competitive and how much energy is consumed by everyone who accesses data," Behbehani said. "Dr. Zhou's work can solve some of those challenges."

####

About UT Arlington
Zhou's research is representative of research excellence at The University of Texas at Arlington, a comprehensive research institution of more than 33,300 students in the heart of North Texas.

For more information, please click here

Contacts:
Herb Booth
Office:817-272-7075
Cell:214-546-1082

Copyright © UT Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Photonics/Optics/Lasers

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project