Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UT Arlington professor to increase speed, capacity on silicon chips with novel lasers

Weidong Zhou
Weidong Zhou

Abstract:
A UT Arlington electrical engineering professor, funded by a new National Science Foundation grant, is working to harness the power of lasers on silicon chips to increase capacity and speed in computing and communications systems.

UT Arlington professor to increase speed, capacity on silicon chips with novel lasers

Arlington, TX | Posted on October 10th, 2013

Weidong Zhou, a professor of electrical engineering with the UT Arlington Nanotechnology Research Center, said the research will advance the use of lasers on silicon based on the breakthroughs reported by his group on printed photonic crystals membrane lasers on silicon last year in Nature Photonics. His colleague, Zhenqiang Ma at the University of Wisconsin-Madison, is collaborating on the $352,982 grant project.

Low-cost silicon chips are used to efficiently house integrated electronic circuits for information processing in a variety of computer and communications devices. Lasers, by comparison, are traditionally incorporated into compound semiconductor materials to engineer high-capacity optical networks.

Silicon photonics - a popular area of research - seeks to integrate the two.

"Lasers on silicon remain a major roadblock toward making integrated silicon photonics work," Zhou said. "Integrating light or lasers on those silicon chips has the potential to increase capacity, increase speed and lower the energy consumption of what those chips do."

Zhou's technology uses photonic crystals to route laser beams in a method that increases the efficiency of the light on the integrated circuit.

"It's like building construction vertically in New York City because there's nowhere to build horizontally," Zhou said.

The technology could eventually allow designers to place optical links on silicon chips with much less wasted material, time and effort, he said. The research has applications for optical imaging, sensing, bio-integrated electronics, signal processing and data transmission, among other uses.

Khosrow Behbehani, dean of the College of Engineering, said Zhou's work has the potential to positively affect many platforms.

"Every day, we hear about limitations of available space on the Internet, how much faster data transfer must become to remain competitive and how much energy is consumed by everyone who accesses data," Behbehani said. "Dr. Zhou's work can solve some of those challenges."

####

About UT Arlington
Zhou's research is representative of research excellence at The University of Texas at Arlington, a comprehensive research institution of more than 33,300 students in the heart of North Texas.

For more information, please click here

Contacts:
Herb Booth
Office:817-272-7075
Cell:214-546-1082

Copyright © UT Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Imaging

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Sensors

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Discoveries

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Photonics/Optics/Lasers

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project