Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New microfluidic approach for the directed assembly of functional materials

An optical micrograph of the microchannel junction with red dye flow-focused in water shows experimental conditions used for nanostructure assembly.
An optical micrograph of the microchannel junction with red dye flow-focused in water shows experimental conditions used for nanostructure assembly.

Abstract:
University of Illinois researchers have developed a new approach with applications in materials development for energy capture and storage and for optoelectronic materials.

New microfluidic approach for the directed assembly of functional materials

Urbana, IL | Posted on October 8th, 2013

According to Charles Schroeder, an assistant professor in the Department of Chemical and Biomolecular Engineering, the results show that peptide precursor materials can be aligned and oriented during their assembly into polypeptides using tailored flows in microfluidic devices.

The research was a collaboration between the labs of Schroeder and William Wilson, a research professor in materials science and engineering and the Frederick Seitz Materials Research Laboratory at Illinois. Their findings were recently published in a paper entitled, "Fluidic-directed assembly of aligned oligopeptides with pi-conjugated cores" in Advanced Materials.

"A grand challenge in the field of materials science is the ability to direct the assembly of advanced materials for desired functionality," says Amanda Marciel, a graduate student in Schroeder's research group. "However, design of new materials is often hindered by our inability to control the structural complexity of synthetic polymers."

"To address the need for controlled processing of functional materials, we developed a microfluidic-based platform to drive the assembly of synthetic oligopeptides," Marciel explained. "Using a microfluidic device, we assembled DFAA and DFAG into one dimensional nanostructures using a planar extensional flow generated in a cross-slot geometry."

The dynamics of the assembly process can be followed in real-time using fluorescence microscopy and spectroscopy.

"The assembled nanostructure is spectrally distinct from the synthetic oligopeptide monomer, which can be used to monitor the dynamics of nanostructure formation," Marciel added. "Using precise hydrodynamic control of the microfluidic platform, the researchers demonstrated the formation of multiple parallel-aligned synthetic oligopeptide nanostructures and their subsequent disassembly. By modulating volumetric flow rates in the device they were able to manipulate the position of the fluid-fluid interface at the microchannel junction.

During this process, nanostructures initially formed at the reactive laminar interface are submerged into the advancing acidic stream, thereby preserving the integrity of the preformed nanostructures while initiating formation of an aligned nanostructure at the new interface position.

Marciel says this research shows that is possible to use microfluidic-based flows to direct the structural assembly of polymers into functional materials.

"Our approach has the potential to enable reproducible and reliable fabrication of advanced materials." Marciel said. "Achieving nanoscale ordering in assembled materials has become the primary focus of recent efforts in the field. These approaches will ultimately lead to desired morphology in functional materials, which will enhance their ability to capture and store energy."

"Our research team is quite interdisciplinary and has a unique range of skills to study materials assembly," Schroeder said. "Our group has extensive experience in the design and fabrication of microfluidic devices and fluorescence imaging of soft materials." The team's ultimate goal is to assemble the organic equivalent of typical semiconducting materials.

"This would open the door to developments of materials with application to photovoltaic devices, solid-state lighting, energy harvesting, and catalytic processes," she said.

In addition to Marciel, Schroeder, and Wilson, the paper's authors included, Melikhan Tanyeri, Brian D. Wall, and John D. Tovar. The team used spectroscopic and analytical tools at the Frederick Seitz Materials Research Lab to conduct its research.

####

For more information, please click here

Contacts:
Charles Schroeder

217-333-3906

Writer:
Sarah Williams
assistant director of communications
Department of Chemical and Biomolecular Engineering
217/244-0541

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper - “Fluidic-directed assembly of aligned oligopeptides with pi-conjugated cores”:

Related News Press

News and information

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Display technology/LEDs/SS Lighting/OLEDs

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

CLAIRE brings electron microscopy to soft materials: Berkeley researchers develop breakthrough technique for noninvasive nanoscale imaging May 14th, 2015

Imaging

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nano-capsules designed for diagnosing malignant tumours: Japanese researchers have developed adaptable nano-capsules that can help in the diagnosis of glioblastoma cells - a highly invasive form of brain tumours May 28th, 2015

Microfluidics/Nanofluidics

What makes cancer cells spread? New device offers clues May 19th, 2015

Microchip captures clusters of circulating tumor cells -- NIH study May 18th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Materials/Metamaterials

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Announcements

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Photonics/Optics/Lasers

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project