Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Laying down a discerning membrane

Abstract:
One of the thinnest membranes ever made is also highly discriminating when it comes to the molecules going through it. Engineers at the University of South Carolina have constructed a graphene oxide membrane less than 2 nanometers thick with high permeation selectivity between hydrogen and carbon dioxide gas molecules.

Laying down a discerning membrane

Columbia, SC | Posted on October 4th, 2013

The selectivity is based on molecular size, the team reported in the journal Science. Hydrogen and helium pass relatively easily through the membrane, but carbon dioxide, oxygen, nitrogen, carbon monoxide and methane permeate much more slowly.

"The hydrogen kinetic diameter is 0.289 nm, and carbon dioxide is 0.33 nm. The difference in size is very small, only 0.04 nm, but the difference in permeation is quite large" said Miao Yu, a chemical engineer in USC's College of Engineering and Computing who led the research team. "The membrane behaves like a sieve. Bigger molecules cannot go through, but smaller molecules can."

In addition to selectivity, what's remarkable about the USC team's result is the quality of the membrane they were able to craft on such a small scale. The membrane is constructed on the surface of a porous aluminum oxide support. Flakes of graphene oxide, with widths on the order of 500 nm but just one carbon atom thick, were deposited on the support to create a circular membrane about 2 square centimeters in area.

The membrane is something of an overlapping mosaic of graphene oxide flakes. It's like covering the surface of a table with playing cards. And doing that on a molecular scale is very hard if you want uniform coverage and no places where you might get "leaks." Gas molecules are looking for holes anywhere they can be found, and in a membrane made up of graphene oxide flakes, there would be two likely places: holes within the flakes, or holes between the flakes.

It's the spaces between flakes that have been a real obstacle to progress in light gas separations. That's why microporous membranes designed to distinguish in this molecular range have typically been very thick. "At least 20 nm, and usually thicker," said Miao. Anything thinner and the gas molecules could readily find their way between non-uniform spaces between flakes.

Miao's team devised a method of preparing a membrane without those "inter-flake" leaks. They dispersed graphene oxide flakes, which are highly heterogeneous mixtures when prepared with current methods, in water and used sonication and centrifugation techniques to prepare a dilute, homogeneous slurry. These flakes were then laid down on the support by simple filtration.

Their thinnest result was a 1.8-nm-thick membrane that only allowed gas molecules to pass through holes in the graphene oxide flakes themselves, the team reported. They found by atomic force microscopy that a single graphene oxide flake had a thickness of approximately 0.7 nm. Thus, the 1.8-nm-thick membrane on aluminum oxide is only a few molecular layers thick, with molecular defects within the graphene oxide that are essentially uniform and just a little too small to let carbon dioxide through easily.

The advance has a range of potential applications. With widespread concerns about carbon dioxide as a greenhouse gas, the efficient separation of carbon dioxide from other gases is a high research priority. Moreover, hydrogen represents an integral commodity in energy systems involving, for example, fuel cells, so purifying it from gas mixtures is also an active area of interest.

Yu also notes that the dimensions of the molecular sieve are on the order of the size of water, so, for example, purifying the copious amounts of tainted water produced by hydraulic fracturing (fracking) is another possibility.

Being able to reduce membrane thickness - and by an order of magnitude - is a big step forward, Yu said. "Having membranes so thin is a big advantage in separation technology," he said. "It represents a completely new type of membrane in the separation sciences."

####

For more information, please click here

Contacts:
Steven Powell

803-777-1923

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Graphene/ Graphite

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Environment

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Energy

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Water

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project