Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Laying down a discerning membrane

Abstract:
One of the thinnest membranes ever made is also highly discriminating when it comes to the molecules going through it. Engineers at the University of South Carolina have constructed a graphene oxide membrane less than 2 nanometers thick with high permeation selectivity between hydrogen and carbon dioxide gas molecules.

Laying down a discerning membrane

Columbia, SC | Posted on October 4th, 2013

The selectivity is based on molecular size, the team reported in the journal Science. Hydrogen and helium pass relatively easily through the membrane, but carbon dioxide, oxygen, nitrogen, carbon monoxide and methane permeate much more slowly.

"The hydrogen kinetic diameter is 0.289 nm, and carbon dioxide is 0.33 nm. The difference in size is very small, only 0.04 nm, but the difference in permeation is quite large" said Miao Yu, a chemical engineer in USC's College of Engineering and Computing who led the research team. "The membrane behaves like a sieve. Bigger molecules cannot go through, but smaller molecules can."

In addition to selectivity, what's remarkable about the USC team's result is the quality of the membrane they were able to craft on such a small scale. The membrane is constructed on the surface of a porous aluminum oxide support. Flakes of graphene oxide, with widths on the order of 500 nm but just one carbon atom thick, were deposited on the support to create a circular membrane about 2 square centimeters in area.

The membrane is something of an overlapping mosaic of graphene oxide flakes. It's like covering the surface of a table with playing cards. And doing that on a molecular scale is very hard if you want uniform coverage and no places where you might get "leaks." Gas molecules are looking for holes anywhere they can be found, and in a membrane made up of graphene oxide flakes, there would be two likely places: holes within the flakes, or holes between the flakes.

It's the spaces between flakes that have been a real obstacle to progress in light gas separations. That's why microporous membranes designed to distinguish in this molecular range have typically been very thick. "At least 20 nm, and usually thicker," said Miao. Anything thinner and the gas molecules could readily find their way between non-uniform spaces between flakes.

Miao's team devised a method of preparing a membrane without those "inter-flake" leaks. They dispersed graphene oxide flakes, which are highly heterogeneous mixtures when prepared with current methods, in water and used sonication and centrifugation techniques to prepare a dilute, homogeneous slurry. These flakes were then laid down on the support by simple filtration.

Their thinnest result was a 1.8-nm-thick membrane that only allowed gas molecules to pass through holes in the graphene oxide flakes themselves, the team reported. They found by atomic force microscopy that a single graphene oxide flake had a thickness of approximately 0.7 nm. Thus, the 1.8-nm-thick membrane on aluminum oxide is only a few molecular layers thick, with molecular defects within the graphene oxide that are essentially uniform and just a little too small to let carbon dioxide through easily.

The advance has a range of potential applications. With widespread concerns about carbon dioxide as a greenhouse gas, the efficient separation of carbon dioxide from other gases is a high research priority. Moreover, hydrogen represents an integral commodity in energy systems involving, for example, fuel cells, so purifying it from gas mixtures is also an active area of interest.

Yu also notes that the dimensions of the molecular sieve are on the order of the size of water, so, for example, purifying the copious amounts of tainted water produced by hydraulic fracturing (fracking) is another possibility.

Being able to reduce membrane thickness - and by an order of magnitude - is a big step forward, Yu said. "Having membranes so thin is a big advantage in separation technology," he said. "It represents a completely new type of membrane in the separation sciences."

####

For more information, please click here

Contacts:
Steven Powell

803-777-1923

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Graphene/ Graphite

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Materials/Metamaterials

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Environment

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Marsden minds: Amazing projects revealed November 3rd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Water

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Fuel Cells

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project