Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Great potential for faster diagnoses with new method

Left: Electron microscope image of nanowire forest. Middle: Diagram of a single nanowire with proteins (red molecules) which captures a different type proteins (green molecules) from a solution. Right: Typical fluorescence microscope image of proteins captures on nanowires (seen from above).
Left: Electron microscope image of nanowire forest. Middle: Diagram of a single nanowire with proteins (red molecules) which captures a different type proteins (green molecules) from a solution. Right: Typical fluorescence microscope image of proteins captures on nanowires (seen from above).

Abstract:
The more accurately we can diagnose a disease, the greater the chance that the patient will survive. That is why many researchers are working to improve the quality of the diagnostic process. Researchers at the Nano-Science Center, University of Copenhagen have discovered a method that will make the process faster, cheaper and more accurate. This is possible, because they are combining advanced tools used in physics for research in biology at nanoscale, two scientific disciplines usually very distant from each other.

Great potential for faster diagnoses with new method

Copenhagen, Denmark | Posted on October 3rd, 2013

Many diseases can be diagnosed using so-called biomarkers. There are substances, for example, that can be measured in a blood sample, which shows that the patient is suffering from the disease in question. These biomarkers are often proteins that are found in very small quantities in the blood, making it difficult to detect them. By measuring them, the diagnosing is more precise and many diseases can be detected very early, before the patient develops severe symptoms.

We have developed a method in which we optimise the analysis of the proteins. A central point of this method is the use of nanowires to hold the proteins while we analyse them. It is unique, explains Katrine R. Rostgaard, a PhD student at the Nano-Science Center, Department of Chemistry, University of Copenhagen.

Researchers normally use small plates to hold the proteins when they need to be analysed, but by using nanowires, which are cylindrical structures having a diameter of about 1/1000th of a human hair, they add a third dimension to the sample. The nanowires stand up like a little forest, creating a much greater surface area to hold the proteins because they can sit on all sides of the nanowire.

- With greater area, we can hold more proteins at once. This makes it possible to measure for multiple biomarkers simultaneously and it increases the signal, thereby providing a better quality of diagnosis, says Katrine R. Rostgaard about the method, which has just been published in the journal Nanoscale.

Profitable method for diagnosing
The research is done at the nanoscale on small size samples. The forests of nanowires are used to capture the proteins they want to study directly. When examining the proteins, you can reuse the nanowires by performing a multiple tests on the same protein. This simplifies the workflow in the laboratory tremendously in comparison to the conventional method, where researchers have to start over with a new plate to hold the proteins every time they perform a new analysis. In this way, the method helps to make the diagnostic process more environmentally friendly and economically viable for use in, for example, industry.

- We know that several major biotech companies will be interested in our new method and find potential applications, though it requires improvements before it is ready for use in the industry, explains Karen Martinez, research group leader of the Nanobio group at the Nano-Science Center, Department of Chemistry, University of Copenhagen.

The work is part of two larger projects, ANaCell and UNIK Center for Synthetic Biology, which is financed by The Danish Council for Strategic Research and the Ministry of Science, Technology and Innovation.

####

For more information, please click here

Contacts:
Karen Martinez

(45) 30-30-04-75

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Imaging

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Oxford Instruments Asylum Research Releases New Application Note: “AFM Applications in Polymer Science and Engineering” January 21st, 2015

One nanoparticle, 6 types of medical imaging: Tomorrow's doctors could use this technology to obtain a super-clear picture of patients' organs and tissues January 20th, 2015

Discoveries

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Announcements

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Tools

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

Nanobiotechnology

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Determination of Critical Force, Time for Manipulation of Biological Nanoparticles January 7th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE