Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New X-ray vision can reveal internal structure of objects

Abstract:
Scientists have developed a new kind of 'X-ray vision' that is able to peer inside an object and map the three-dimensional distribution of its nano-properties in real time.

New X-ray vision can reveal internal structure of objects

Manchester, UK | Posted on October 3rd, 2013

University of Manchester researchers, working with colleagues in the UK, Europe and the US, say the novel imaging technique could have a wide range of applications across many disciplines, such as materials science, geology, environmental science and medical research.

"This new imaging method - termed Pair Distribution Function-Computed Tomography - represents one of the most significant developments in X-ray micro tomography for almost 30 years," said Professor Robert Cernik in Manchester's School of Materials.

"Using this method we are able to image objects in a non-invasive manner to reveal their physical and chemical nano-properties and relate these to their distribution in three-dimensional space at the micron scale.

"Such relationships are key to understanding the properties of materials and so could be used to look at in-situ chemical reactions, probe stress-strain gradients in manufactured components, distinguish between healthy and diseased tissue, identify minerals and oil-bearing rocks or identify illicit substances or contraband in luggage."

The research, published in the journal Nature Communications, explains how the new imaging technique uses scattered X-rays to form a three-dimensional reconstruction of the image.

"When X-rays hit an object they are either transmitted, absorbed or scattered," explained Professor Cernik. "Standard X-ray tomography works by collecting the transmitted beams, rotating the sample and mathematically reconstructing a 3D image of the object. This is only a density contrast image, but by a similar method using the scattered X-rays instead we can obtain information about the structure and chemistry of the object even if it has a nanocrystalline structure.

"By using this method we are able to build a much more detailed image of the object and, for the first time, separate the nanostructure signals from the different parts of a working device to see what the atoms are doing in each location, without dismantling the object."

The international research team included scientists from The University of Manchester, University College London, the US Department of Energy's Brookhaven National Laboratory and Columbia University, New York.

A copy of the paper, entitled ‘Pair Distribution Function-Computed Tomography,' published in Nature Communications, is available on request.

####

For more information, please click here

Contacts:
Aeron Haworth

44-161-275-8387
Mob: 07717 881563

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Imaging

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

Tools

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Research partnerships

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE