Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Method developed at UT Arlington allows quantitative nanoscopic imaging through silicon

Mohanty
Mohanty

Abstract:
A team of scientists from The University of Texas at Arlington and MIT has figured out how to quantitatively observe cellular processes taking place on so-called "lab on a chip" devices in a silicon environment.

Method developed at UT Arlington allows quantitative nanoscopic imaging through silicon

Arlington, TX | Posted on October 2nd, 2013

The new technology will be useful in drug development as well as disease diagnosis, researchers say.

In a paper published in Nature's online journal Scientific Reports, the team said it overcame past limitations on quantitative microscopy through an opaque media by working with a new combination of near infrared light and a technique called quantitative phase imaging. Quantitative phase imaging is about a decade old. It uses shifts in phases of light, not staining techniques, to aid specimen imaging - earning the term "label-free."

"To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment," said Assistant Professor of Physics Samarendra Mohanty, head of the Biophysics and Physiology Laboratory at UT Arlington and corresponding author on the paper.

The UT Arlington/MIT team was able to prove success in analyzing specimens through a silicon wafer in two instances. In one, they accomplished full-field imaging of the features of red blood cells to nanometer thickness accuracy. In another, they observed dynamic variation of human embryonic kidney cells in response to change in salt concentration. Mohanty believes that his group's current work on near infrared quantitative phase imaging can lead to non-invasive, label-free monitoring of neuronal activities.

Additional co-authors include: Bipin Joshi and Nelson Cardenas, of UT Arlington; and Ishan Barman, Narahara Chari Dingari, Jaqueline S. Soares and Ramachandra R. Dasari, all of MIT.

"Silicon-based micro devices known as labs-on-a-chip are revolutionizing high throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems," said Joshi, a recent graduate and lead author on the paper. "The technology we've developed is well-suited to meet this need."

Barman, now an assistant professor at Johns Hopkins University, said the new paper is a prime example of the type of research he hopes to do - projects pulled by needs of the biomedical community and continually pushing the edge of biophotonic solutions.

"We envision that this significantly expands the visualization possible in silicon based microelectronic and micromechanical devices," he said.

Mohanty's group has recently combined the near infrared quantitative phase imaging with near-infrared optical tweezers for tomographic imaging of cells [N. Cardenas, and S. K. Mohanty, "Optical tweezers assisted quantitative phase imaging led to thickness mapping of red blood cells", Appl. Phys. Lett., 103, 013703 (2013)].

The joint UT Arlington/ MIT research was supported by Nanoscope Technologies and funded in part by a National Institute of Biomedical Imaging and Bioengineering grant.

####

About University of Texas at Arlington
The University of Texas at Arlington is a comprehensive institution of about 33,000 students and more than 2,200 faculty members in the heart of North Texas. It is the second largest school in The University of Texas System. Visit www.uta.edu to learn more.

For more information, please click here

Contacts:
Traci Peterson

Office:817-272-9208
Cell:817-521-5494

Copyright © University of Texas at Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Imaging

The stacked color sensor: True colors meet minimization November 16th, 2017

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Nanomedicine

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Tools

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanometrics Board of Directors Names Pierre-Yves Lesaicherre President and CEO November 14th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project