Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Production of Fluorapatite-Zirconia Biocompatible Nanocomposite

Abstract:
Iranian researchers from Islamic Azad University succeeded in the production of fluorapatite-zirconia nanocomposite through mechanochemical method.

Production of Fluorapatite-Zirconia Biocompatible Nanocomposite

Tehran, Iran | Posted on October 2nd, 2013

The obtained product has higher chemical stability and lower degradation rate in biological environment.

The main objective of the research was to synthesize and characterize fluorapatite-zirconia composite nanopowder through mechanochemical methods. To this end, the mentioned composite nanopowder was produced by using raw material based on calcium and phosphorus and by using ball mill device. In characterization stage, the nanostructural properties of the product were investigated by using laboratorial equipment.

Generally speaking, the simplicity of the method and its ability of reproduction are among the important properties of the suggested process, which make possible the mass production of the novel composite. The properties of the product depend on the type of the raw material and also on process parameters such as time, vessel type, atmosphere, and parameters that control the reaction. Therefore, it is mandatory to determine the effect of the parameters on the synthesis process to produce other similar compounds. For instance, since high activation time pollutes the product, it is necessary to determine appropriate time for the production of a product with desirable chemical-phase purity, specially in biological and medical applications.

High solubility rate in human body's physiological environment, low corrosion resistance in acidic media, and weak chemical stability at high temperatures limit the wide application of hydroxyapatite and other materials based on hydroxyapatite. Therefore, the properties of hydroxyapatite have been improved by carrying out structural modification in this research (substitution of fluorine ions and using ceramic strengthening agent). In fact, it is expected that the product would have higher chemical stability and lower solubility rate in biological environment.

Results of the research have been published in details in May 2013 in Ceramics International, vol. 39, issue 4, pp. 4329-4337.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Discoveries

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE