Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Fique fibers from Andes Mountains part of miracle solution for dye pollution, find scientists

The beaker on the left contains an indigo blue dye solution prior to treatment with modified fique fibers. The beaker on the right shows the same indigo blue solution made clear, after modified fibers degraded the dye in only five minutes.
The beaker on the left contains an indigo blue dye solution prior to treatment with modified fique fibers. The beaker on the right shows the same indigo blue solution made clear, after modified fibers degraded the dye in only five minutes.

Abstract:
A cheap and simple process using natural fibers embedded with nanoparticles can almost completely rid water of harmful textile dyes in minutes, report Cornell University and Colombian researchers who worked with native Colombian plant fibers.

Fique fibers from Andes Mountains part of miracle solution for dye pollution, find scientists

Ithaca, NY | Posted on September 30th, 2013

Dyes, such as indigo blue used to color blue jeans, threaten waterways near textile plants in South America, India and China. Such dyes are toxic, and they discolor the water, thereby reducing light to the water plants, which limits photosynthesis and lowers the oxygen in the water.

The study, published in the August issue of the journal Green Chemistry, describes a proof of principle, but the researchers are testing how effectively their method treats such endocrine-disrupting water pollutants as phenols, pesticides, antibiotics, hormones and phthalates.

"These molecules are contaminants that are very resilient to traditional water-purification processes, and we believe our biocomposite materials can be an option for their removal from waste water," said study co-author, Marianny Combariza, a researcher at Colombia's Universidad Industrial de Santander.

The research takes advantage of nano-sized cavities found in cellulose that co-author Juan Hinestroza, Cornell associate professor of fiber science, has previously used to produce nanoparticles inside cotton fibers.

The paper describes the method: Colombian fique plant fibers, commonly used to make coffee bags, are immersed in a solution of sodium permanganate and then treated with ultrasound; as a result, manganese oxide molecules grow in the tiny cellulose cavities. Manganese oxides in the fibers react with the dyes and break them down into non-colored forms.

In the study, the treated fibers removed 99 percent of the dye from water within minutes. Furthermore, the same fibers can be used repeatedly -- after eight cycles, the fibers still removed between 97 percent and 99 percent of the dye.

"No expensive or particular starting materials are needed to synthesize the biocomposite," said Combariza. "The synthesis can be performed in a basic chemistry lab."

"This is the first evidence of the effectiveness of this simple technique," said Hinestroza. "It uses water-based chemistry, and it is easily transferable to real-world situations."

The researchers are testing their process on other types of pollutants, other fibers and composite materials. "We are working now on developing a low-cost filtering unit prototype to treat polluted waters," said Combariza. "We are not only focused on manganese oxides, we also work on a variety of materials based on transition metal oxides that show exceptional degradation activity."

###

Doctoral candidate Martha Chacón-Patiño is the paper's lead author, and chemistry professor Cristian Blanco-Tirado is a co-author, both at Universidad Industrial de Santander.

The study, "Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation," was funded by COLCIENCIAS, the World Bank, the vice chancellor's office of the Universidad Industrial de Santander, as well as Cornell's Mario Einaudi Center for International Studies and Cornell University Agricultural Experiment Station Hatch Funds.

####

For more information, please click here

Contacts:
Syl Kacapyr

607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Environment

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

PerkinElmer to Display Innovative Detection and Informatics Offerings at ACS National Meeting & Exposition Detection, Data Visualization and Analytics for Chemistry Professionals August 8th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Textiles/Clothing

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Iranian Scientists Change Structure of Nanoparticles to Increase Durability of Antibacterial Activity of Fabrics July 7th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE