Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fique fibers from Andes Mountains part of miracle solution for dye pollution, find scientists

The beaker on the left contains an indigo blue dye solution prior to treatment with modified fique fibers. The beaker on the right shows the same indigo blue solution made clear, after modified fibers degraded the dye in only five minutes.
The beaker on the left contains an indigo blue dye solution prior to treatment with modified fique fibers. The beaker on the right shows the same indigo blue solution made clear, after modified fibers degraded the dye in only five minutes.

Abstract:
A cheap and simple process using natural fibers embedded with nanoparticles can almost completely rid water of harmful textile dyes in minutes, report Cornell University and Colombian researchers who worked with native Colombian plant fibers.

Fique fibers from Andes Mountains part of miracle solution for dye pollution, find scientists

Ithaca, NY | Posted on September 30th, 2013

Dyes, such as indigo blue used to color blue jeans, threaten waterways near textile plants in South America, India and China. Such dyes are toxic, and they discolor the water, thereby reducing light to the water plants, which limits photosynthesis and lowers the oxygen in the water.

The study, published in the August issue of the journal Green Chemistry, describes a proof of principle, but the researchers are testing how effectively their method treats such endocrine-disrupting water pollutants as phenols, pesticides, antibiotics, hormones and phthalates.

"These molecules are contaminants that are very resilient to traditional water-purification processes, and we believe our biocomposite materials can be an option for their removal from waste water," said study co-author, Marianny Combariza, a researcher at Colombia's Universidad Industrial de Santander.

The research takes advantage of nano-sized cavities found in cellulose that co-author Juan Hinestroza, Cornell associate professor of fiber science, has previously used to produce nanoparticles inside cotton fibers.

The paper describes the method: Colombian fique plant fibers, commonly used to make coffee bags, are immersed in a solution of sodium permanganate and then treated with ultrasound; as a result, manganese oxide molecules grow in the tiny cellulose cavities. Manganese oxides in the fibers react with the dyes and break them down into non-colored forms.

In the study, the treated fibers removed 99 percent of the dye from water within minutes. Furthermore, the same fibers can be used repeatedly -- after eight cycles, the fibers still removed between 97 percent and 99 percent of the dye.

"No expensive or particular starting materials are needed to synthesize the biocomposite," said Combariza. "The synthesis can be performed in a basic chemistry lab."

"This is the first evidence of the effectiveness of this simple technique," said Hinestroza. "It uses water-based chemistry, and it is easily transferable to real-world situations."

The researchers are testing their process on other types of pollutants, other fibers and composite materials. "We are working now on developing a low-cost filtering unit prototype to treat polluted waters," said Combariza. "We are not only focused on manganese oxides, we also work on a variety of materials based on transition metal oxides that show exceptional degradation activity."

###

Doctoral candidate Martha Chacón-Patiño is the paper's lead author, and chemistry professor Cristian Blanco-Tirado is a co-author, both at Universidad Industrial de Santander.

The study, "Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation," was funded by COLCIENCIAS, the World Bank, the vice chancellor's office of the Universidad Industrial de Santander, as well as Cornell's Mario Einaudi Center for International Studies and Cornell University Agricultural Experiment Station Hatch Funds.

####

For more information, please click here

Contacts:
Syl Kacapyr

607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Discoveries

Graphene reduces wear of alumina ceramic March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Graphene reduces wear of alumina ceramic March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Textiles/Clothing

Scientists discover gecko secret March 16th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts February 3rd, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

FEI Announces Image Contest Grand Prize Winner: Francisco Rangel of the National Institute of Technology, INT/MCTI, Brazil, wins the contest with his “Expanded Vermiculite” image March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

Hiden Instruments identified in London Stock Exchange’s ‘1000 Companies to Inspire Britain' March 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE