Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Superfast switching of quantum light sources

Cartoon of the superfast emission of a light source. The light source is embedded in an optical resonator where it spontaneously emits a photon. During the emission of the photon the favored color of the resonator is quickly switched – symbolized by a hammer to match the color of the light source. During this short interval the light source is triggered to emit an ultrashort burst of photons within a desired moment in time.
Cartoon of the superfast emission of a light source. The light source is embedded in an optical resonator where it spontaneously emits a photon. During the emission of the photon the favored color of the resonator is quickly switched – symbolized by a hammer to match the color of the light source. During this short interval the light source is triggered to emit an ultrashort burst of photons within a desired moment in time.

Abstract:
Usually, an elementary light source - such as an excited atom or molecule - emits light of a particular color at an unpredictable instance in time. Recently, however, scientists from the MESA+ Institute for Nanotechnology of the UT, FOM and the Institute for Nanoscience and Cryogenics (CEA/INAC) in France have shown that a light source can be coaxed to emit light at a desired moment in time, within an ultrashort burst. The superfast switching of a light source has applications in fast stroboscopes without laser speckle, in the precise control of quantum systems and for ultrasecure communication using quantum cryptography. The theoretical results were published in Optics Express.

Superfast switching of quantum light sources

Enschede, Netherlands | Posted on September 28th, 2013

pontaneous emission of light from excited sources, such as atoms, molecules or quantum dots, is a fundamental process with many applications in modern technology, such as LEDs and lasers. As the term 'spontaneous emission' indicates, the emission is random in nature and it is therefore impossible to predict the exact emission time of a photon. However, for several applications it is desirable to receive single photons exactly when they are needed with as little uncertainty as possible. This property is crucial for ultra-secure communication using quantum cryptography and in quantum computers. Therefore, the important goal is to fabricate a quantum light source such that it emits a single photon exactly at a desired moment in time.

Switching light emission

The average emission time of quantum light sources can be reduced by locating them in various nanostructures, like optical resonators or waveguides. But the distribution of emission times is always exponential in time in a usual stationary environment. In addition, the smallest uncertainty in the emission time is limited by both the maximum intensity in the resonator and the variations in the preparation time of the emitter. The Dutch-French team proposes to overcome these limitations by quickly switching the resonator length, in which the light source is located. The time duration of the switch should be much shorter than the average emission time. The result is that the favored color of the resonator only matches the emission color of the light source within a short time interval. Only within this short time frame are the photons emitted by the light source into the resonator.

Ultrafast light source
The researchers propose to use quantum dot light sources, which can easily be integrated in semiconductor optical resonators with lengths on the order of microns. The switching of the resonator will be achieved by shining an ultrashort laser pulse at the micropillar resonator during the emission time of the quantum dots. This quickly changes the refractive in the resonator and thereby the effective resonator length. The switching time can be directly controlled by the arrival time of the short laser pulse and by the lifetime of the excited electrons. These controlled light switches have great prospects for creating incoherent ultrafast light sources for fast stroboscopes without laser speckle, in quantum cryptography, in quantum information and for studying ultrafast cavity Quantum electrodynamics.

The team

The research has been performed by FOM postdoc Dr. Henri Thyrrestrup, Dr. Alex Hartsuiker and FOM workgroup leader Prof.dr. Willem L. Vos from the Complex Photonic Systems (COPS) Chair at the MESA+ Institute for Nanotechnology of the University of Twente in Enschede, The Netherlands, in close collaboration with Prof.dr. Jean-Michel Gérard from the Institute for Nanoscience and Cryogeny (CEA/INAC) in Grenoble, France.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationHenri Thyrrestrup, Alex Hartsuiker, Jean-Michel Gérard, and Willem L. Vos, Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity, Optics Express, Vol. 21, Issue 20, pp. 23130-23144 (2013):

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Carbodeon enables 20 percent increase in polymer thermal filler conductivity with 0.03 wt.% nanodiamond additive at a lower cost than with traditional fillers: Improved materials and processes enable nanodiamond cost reductions of up to 70 percent for electronics and LED app July 9th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Projecting a Three-Dimensional Future: TAU researchers develop holography technology that could change the way we view the world July 9th, 2014

Quantum Computing

Harris & Harris Group Portfolio Company D-Wave Systems Closes a $28.4 Million Financing July 14th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

From pencil marks to quantum computers: Introducing graphene July 5th, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Tools

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Quantum Dots/Rods

Researchers create quantum dots with single-atom precision June 30th, 2014

New Los Alamos Approach May Be Key to Quantum Dot Solar Cells With Real Gains in Efficiency: Nanoengineering Boosts Carrier Multiplication in Quantum Dots June 19th, 2014

MIPT-based researcher predicts new state of matter June 17th, 2014

Technology using microwave heating may impact electronics manufacture June 10th, 2014

Photonics/Optics/Lasers

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE