Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny antennas let long light waves see in infrared

Graphic by Daniel Wasserman

Nanoantennas made of semiconductor can help scientists detect molecules with infrared light.
Graphic by Daniel Wasserman

Nanoantennas made of semiconductor can help scientists detect molecules with infrared light.

Abstract:
University of Illinois at Urbana-Champaign researchers have developed arrays of tiny nano-antennas that can enable sensing of molecules that resonate in the infrared (IR) spectrum.

Tiny antennas let long light waves see in infrared

Champaign, IL | Posted on September 23rd, 2013



9/23/13

TINY ANTENNAS LET LONG LIGHT WAVES SEE IN INFRARED

CONTACT: Liz Ahlberg, Physical Sciences Editor 217-244-1079;

CHAMPAIGN, Ill. — University of Illinois at Urbana-Champaign researchers have developed arrays of tiny nano-antennas that can enable sensing of molecules that resonate in the infrared (IR) spectrum.

"The identification of molecules by sensing their unique absorption resonances is very important for environmental monitoring, industrial process control and military applications," said team leader Daniel Wasserman, a professor of electrical and computer engineering. Wasserman is also a part of the Micro and Nano Technology Laboratory at Illinois.

The food and pharmaceutical industries use light to detect contaminants and to ensure quality. The light interacts with the bonds in the molecules, which resonate at particular frequencies, giving each molecule a "spectral fingerprint." Many molecules and materials more strongly resonate in the IR end of the spectrum, which has very long wavelengths of light - often larger than the molecules themselves.

"The absorption signatures of some of the molecules of interest for these applications can be quite weak, and as we move to nano-scale materials, it can be very difficult to see absorption from volumes smaller than the wavelength of light," Wasserman said. "It is here that our antenna array surfaces could have a significant impact."

Other nano-scale antenna systems cannot be tuned to a longer light wavelength because of the limitations of traditional nanoantenna materials. The Illinois team used highly doped semiconductors, grown by a technique called molecular beam epitaxy that is used to make IR lasers and detectors.

"We have shown that nanostructures fabricated from highly doped semiconductors act as antennas in the infrared," said Stephanie Law, a postdoctoral researcher at Illinois and the lead author of the work. "The antennas concentrate this very long wavelength light into ultra-subwavelength volumes, and can be used to sense molecules with very weak absorption resonances."

The semiconductor antenna arrays allow long-wavelength light to strongly interact with nano-scale samples, so the arrays could enhance the detection of small volumes of materials with a standard IR spectrometer - already a commonplace piece of equipment in many industrial and research labs.

The researchers further demonstrated their ability to control the position and strength of the antenna resonance by adjusting the nanoantenna dimensions and the semiconductor material properties.

The group will continue to explore new shapes and structures to further enhance light-matter interaction at very small scales and to potentially integrate these materials with other sensing systems.

"We are looking to integrate these antenna structures with optoelectronic devices to make more efficient, smaller, optoelectronic components for sensing and security applications," Wasserman said.

####

For more information, please click here

Contacts:
Daniel Wasserman
217-333-9872

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “All-Semiconductor Plasmonic Nanoantennas for Infrared Sensing,” is available online:

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Optical computing/Photonic computing

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic