Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Domain walls as new information storage medium - Visualization of domain wall motion: Material defects do not impede wall motion at high velocities / Publication of findings in Nature Communications 23

Image of a ferromagnetic ring prepared using a scanning electron microscope: The magnetization (black/white contrast) runs along the ring and forms two domain walls.
Image of a ferromagnetic ring prepared using a scanning electron microscope: The magnetization (black/white contrast) runs along the ring and forms two domain walls.

Abstract:
While searching for ever smaller devices that can be used as data storage systems and novel sensors, physicists at Johannes Gutenberg University Mainz (JGU) have directly observed magnetization dynamics processes in magnetic nanowires and thus paved the way for further research in the field of nanomagnetism. Small magnetic domain wall structures in nanowires can be used to store information and, for example, can be used as angle sensors. Initial applications based on magnetic domain walls have been developed and are already in use in sensor technology. The current findings represent the first experimentally recorded direct imaging of predicted correlations between magnetic spin structure and wall velocity. The newly discovered properties could be used for other future applications in information technology.

Domain walls as new information storage medium - Visualization of domain wall motion: Material defects do not impede wall motion at high velocities / Publication of findings in Nature Communications 23

Mainz, Germany | Posted on September 23rd, 2013

Magnetic domains represent regions of uniform magnetization in ferromagnetic materials. Within each domain, the magnetization is aligned in a single direction. At the interface where domains of different magnetization direction meet, the magnetization has to rotate from one direction to another in a so-called domain wall. At Mainz University, the group of Professor Mathias Kläui is studying the properties of magnetic domains and the dynamics of domains and domain walls in tiny rings on the nanoscale. It is possible to directly observe the motion of domain walls in these rings that have a diameter of some 4 micrometers and are made of permalloy, a soft nickel-iron alloy. For this purpose, the Mainz physicists have been collaborating with scientists of the BESSY II synchrotron facility at the Helmholtz Center Berlin for Materials and Energy and the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory, Berkeley, USA, as well as with the Technical University of Berlin and the Max Planck Institute for Intelligent Systems in Stuttgart.

The researchers discovered that the velocity of the motion of domain walls is always oscillating. "This is a new effect that could prove to be useful in the future," said Dr. André Bisig, lead author of the paper "Correlation between spin structure oscillations and domain wall velocities," which has recently been published in Nature Communications. It was also found that the applied method is very effective in reliably moving the domain walls at very high velocities. "The faster we move the domain wall, the easier it is to control it," said Bisig. Another observation concerns the effects associated with irregularities or defects in the nanowires. According to the results, these effects only become noticeable when domain walls are moving slowly. The faster a domain wall spins, the less relevant is the role played by defects in the material.

While theoretical research concerns itself principally with observing domain wall velocity and its correlation with oscillations in the spin structure, the results obtained also have important implications for applied research. Domain wall-based sensors are already being used by Sensitec GmbH, Mainz, a cooperating partner of JGU and the Technical University of Kaiserslautern in two projects funded by the state of Rhineland-Palatinate: the Spintronics Technology Platform in Rhineland-Palatinate (STeP) and the Technology Transfer Service Center for New Materials (TT-DINEMA). "Of particular importance is the fact that we observed unimpeded domain wall motion at high domain wall velocities. This represents highly promising potential for the use of these nanostructures in ultra-fast rotating sensors," added Professor Mathias Kläui. The research being undertaken by Professor Kläui's team is being funded by an ERC Starting Grant and the Graduate School of Excellence Materials Science in Mainz (MAINZ). In addition, cooperation with Sensitec has resulted in access to a joint EU project involving seven other leading partners expected to start in October 2013 on "Controlling domain wall dynamics for functional devices".

####

For more information, please click here

Contacts:
Dr. André Bisig
Condensed Matter Physics (KOMET)
Institute of Physics
Johannes Gutenberg University
D 55099 Mainz
Tel +49 6131 39-23635
Fax +49 6131 39-24076

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication

Dr. André Bisig Homepage:

Related News Press

News and information

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Imaging

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

Photoacoustic imaging and photothermal cancer therapy using BR nanoparticles September 26th, 2017

Spintronics

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Discoveries

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Announcements

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Tools

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project