Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Building bridges between nanowires

Abstract:
Place a layer of gold only a few atoms high on a surface bed of germanium, apply heat to it, and wires will form of themselves. Gold-induced wires is what Mocking prefers to call them. Not 'gold wires', as the wires are not made solely out of gold atoms but also contain germanium. They are no more than a few atoms in height and are separated by no more than 1.6 nanometres (a nanometre is one millionth of a millimetre). Nanotechnologists bridge this small 'gap' with a copper-phthalocyanine molecule. A perfect fit. This molecule was found to be able to rotate if the electrons coursing towards it possess sufficient energy, allowing it to function as a switch. What's more: the copper atom of this molecule floats in the vacuum above the gap - fully detached. This might allow researchers to identify new properties the nanowires may possess.

Building bridges between nanowires

Enschede, Netherlands | Posted on September 21st, 2013

Quantum effects

Mocking also managed to craft new 1D structures with two different metals, iridium and cobalt - obtaining entirely different results. For instance, he was able to prove that quantum effects occur to iridium when heated to room temperature, leading to the wires always being 4.8 nanometres, or a multiple thereof, in length. This astonishing result was published in Nature Communications earlier this year. When cobalt, the third of the metals, was heated, no wires were formed.
Instead, little 'islands' and 'nanocrystals' appeared.

Bottom-up nanoelectronics

Mocking used the semiconductor germanium as substrate for each of the three metals, as it is easy to work with at relatively low temperatures and possesses a suitable crystal structure. Scanning Tunneling Microscopy (STM) is ideally suited to investigate these structures. His research is of fundamental importance, as surprising physical effects are noticeable when deconstructing to the lower dimensions, up to 1D. It also allows for the 'bottom-up' crafting of electronic switches: start with the smallest, self-organising structures, add molecules, and proceed from there. The process is still in its infancy, but may become an alternative to the current 'top-down' approach, which entails removing ever more parts from a larger structure. The gold and iridium-inducted wires may form starting blocks for the process. The cobalt islands, though less suitable to this new type of electronics science, do provide fundamental new insights.

Tijs Mocking (1984, Utrecht, NL) defended his dissertation ‘Properties of 1D metal-induced structures on semiconductor surfaces' on 19 September 2013. His research was conducted within the Physics of Interfaces and Nanomaterials group of the MESA+ Institute for Nanotechnology, led by Professor Harold Zandvliet. A digital copy of the dissertation, or a summary thereof, may be requested.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Chip Technology

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Global Nano Barium Sulfate Industry 2015 Market Research Report July 23rd, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Quantum nanoscience

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature July 14th, 2015

The quantum physics of artificial light harvesting: How molecular vibrations make photosynthesis efficient July 13th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project