Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Container's material properties affect the viscosity of water at the nanoscale: Glass or plastic?

This illustration shows how the different effective viscosity of water affects the force required to slide two surfaces separated by a thin layer of water when confined by a hydrophilic material or a hydrophobic material.

Credit: Illustration courtesy of Elisa Riedo
This illustration shows how the different effective viscosity of water affects the force required to slide two surfaces separated by a thin layer of water when confined by a hydrophilic material or a hydrophobic material.

Credit: Illustration courtesy of Elisa Riedo

Abstract:
Water pours into a cup at about the same rate regardless of whether the water bottle is made of glass or plastic.

Container's material properties affect the viscosity of water at the nanoscale: Glass or plastic?

Atlanta, GA | Posted on September 19th, 2013

But at nanometer-size scales for water and potentially other fluids, whether the container is made of glass or plastic does make a significant difference. A new study shows that in nanoscopic channels, the effective viscosity of water in channels made of glass can be twice as high as water in plastic channels. Nanoscopic glass channels can make water flow more like ketchup than ordinary H2O.

The effect of container properties on the fluids they hold offers yet another example of surprising phenomena at the nanoscale. And it also provides a new factor that the designers of tiny mechanical systems must take into account.

"At the nanoscale, viscosity is no longer constant, so these results help redefine our understanding of fluid flow at this scale," said Elisa Riedo, an associate professor in the School of Physics at the Georgia Institute of Technology. "Anyone performing an experiment, developing a technology or attempting to understand a biological process that involves water or another liquid at this size scale will now have to take the properties of surfaces into account."

Those effects could be important to designers of devices such as high resolution 3D printers that use nanoscale nozzles, nanofluidic systems and even certain biomedical devices. Considering that nano-confined water is ubiquitous in animal bodies, in rocks, and in nanotechnology, this new understanding could have a broad impact.

Research into the properties of liquids confined by different materials was sponsored by the Department of Energy's Office of Basic Sciences and the National Science Foundation. The results were scheduled to be reported September 19 in the journal Nature Communications.

The viscosity differences created by container materials are directly affected by the degree to which the materials are either hydrophilic -- which means they attract water -- or hydrophobic -- which means they repel it. The researchers believe that in hydrophilic materials, the attraction for water -- a property known as "wettability" -- makes water molecules more difficult to move, contributing to an increase in the fluid's effective viscosity. On the other hand, water isn't as attracted to hydrophobic materials, making the molecules easier to move and producing lower viscosity.

In research reported in the journal, this water behavior appeared only when water was confined to spaces of a few nanometers or less -- the equivalent of just a few layers of water molecules. The viscosity continued to increase as the surfaces were moved closer together.

The research team studied water confined by five different surfaces: mica, graphene oxide, silicon, diamond-like carbon, and graphite. Mica, used in the drilling industry, was the most hydrophilic of the materials, while graphite was the most hydrophobic.

"We saw a clear one-to-one relationship between the degree to which the confining material was hydrophilic and the viscosity that we measured," Riedo said.

Experimentally, the researchers began by preparing atomically-smooth surfaces of the materials, then placing highly-purified water onto them. Next, an AFM tip made of silicon was moved across the surfaces at varying heights until it made contact. The tip -- about 40 nanometers in diameter -- was then lifted up and the measurements continued.

As the viscosity of the water increased, the force needed to move the AFM tip also increased, causing it to twist slightly on the cantilever beam used to raise and lower the tip. Changes in this torsion angle were measured by a laser bounced off the reflective cantilever, providing an indication of changes in the force exerted on the tip, the viscous resistance exerted -- and therefore the water's effective viscosity.

"When the AFM tip was about one nanometer away from the surface, we began to see an increase of the viscous force acting on the tip for the hydrophilic surfaces," Riedo said. "We had to use larger forces to move the tip at this point, and the closer we got to the surface, the more dramatic this became."

Those differences can be explained by understanding how water behaves differently on different surfaces.

"At the nanoscale, liquid-surface interaction forces become important, particularly when the liquid molecules are confined in tiny spaces," Riedo explained. "When the surfaces are hydrophilic, the water sticks to the surface and does not want to move. On hydrophobic surfaces, the water is slipping on the surfaces. With this study, not only have we observed this nanoscale wetting-dependent viscosity, but we have also been able to explain quantitatively the origin of the observed changes and relate them to boundary slip. This new understanding was able to explain previous unclear results of energy dissipation during dynamic AFM studies in water."

While the researchers have so far only studied the effect of the material properties in water channels, Riedo expects to perform similar experiments on other fluids, including oils. Beyond simple fluids, she hopes to study complex fluids composed of nanoparticles in suspension to determine how the phenomenon changes with particle size and chemistry.

"There is no reason why this should not be true for other liquids, which means that this could redefine the way that fluid dynamics is understood at the nanoscale," she said. "Every technology and natural process that uses liquids confined at the nanoscale will be affected."

###

In addition to Riedo, co-authors of the paper included Deborah Ortiz-Young, Hsiang-Chih Chiu and Suenne Kim, who were at Georgia Tech when the research was done, and Kislon Voitchovsky of the Ecole Polytechnique Federale de Lausanne in Switzerland.

CITATION: Deborah Ortiz-Young, Hsiang-Chih Chiu, Suenne Kim, Kislon Voitchovsky and Elisa Riedo, "The interplay between apparent viscosity and wettability in nanoconfined water, (Nature Communications, 2013).

This research was supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under grant DE-FG02-06ER46293 and by the National Science Foundation (NSF) under grants DMR-0120967, DMR-0706031 and CMMI-1100290. Any opinions or conclusions are those of the authors and do not necessarily reflect the official views of the DOE or NSF.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Chemistry

Creating new materials with quantum effects for electronics January 29th, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Microfluidics/Nanofluidics

Going with the flow January 16th, 2015

How bacteria control their size: By monitoring thousands of individual bacteria scientists discovered how they maintain their size from generation to generation January 6th, 2015

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Dolomite launches Mitos Dropix® Droplet Splitting System December 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Discoveries

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Announcements

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Asteroid Mining 101: A New Book by World-Renowned Expert Dr. John S. Lewis - Exclusive Sneak-Peek Opportunity for Book Reviewers and Media January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Water

Nanoparticles for clean drinking water January 17th, 2015

Going with the flow January 16th, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Liquids and glasses relax, too. But not like you thought January 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE