Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Green photon beams more agile than optical tweezers: Optical manipulation of macrostructures is possible with greater precision

Abstract:
Romanian scientists have discovered a novel approach for the optical manipulation of macromolecules and biological cells. Their findings, published in EPJ B, stem from challenging the idea that visible light would induce no physical effect on them since it is not absorbed. Instead, Sorin Comorosan, working as a physicist at the National Institute for Physics and Nuclear Engineering based in Magurele, Romania, and as a biologist at the Fundeni Clinical Institute, Bucharest, Romania, and colleagues, had the idea to use green photon beams. With them, it is possible to perform optical manipulation of macrostructures, such as biological proteins, with greater precision than with optical tweezers made from focused laser beams.

Green photon beams more agile than optical tweezers: Optical manipulation of macrostructures is possible with greater precision

Heidelberg, Germany | Posted on September 18th, 2013

The authors used what are known as high-density green photon beams (HDGP). These are capable of inducing a polarisation effect, separating the positive from the negative charges within complex macrostructures. As a result, the polarised structures interact with an external electromagnetic field and with one another. The authors experimented with long carbon chains, which represent the framework of biological macromolecules. They then used a range of physical techniques to reveal the locally induced molecular arrangements.

Comorosan and colleagues found that the effect of the beam leads to a type of matter called ‘biological optical matter.' It includes newly organised material structures, such as molecular aggregates and micro-particles, and can feature new characteristics such as antioxidant properties. The authors realised that this approach covers a larger area than focused tweezers and is capable of organising so-called mesoscopic matter—ranging from the nano to the micrometric scale— into a new 3D molecular architecture.

They then performed numerical calculations on a physical model they developed to compute the interacting force between polarisable bodies. Further study of the interaction of these polarised proteins with the body's unpolarised proteins could have far-reaching applications in immunology, genetics and epigenetics.

####

For more information, please click here

Contacts:
Franziska Hornig

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:S. Comorosan et al., (2013), Optical manipulation of complex molecular systems by high density green photons: experimental and theoretical evidence, European Physical Journal B 86: 232, DOI 10.1140/epjb/e2013-40049-8:

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Nanomedicine

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Nanobiotechnology

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Photonics/Optics/Lasers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project