Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Environmentally friendly cement is stronger than ordinary cement

The IRIS instrument is viewed from above. The cement sample is lowered about 120 cm into a cryostat so that it is hit by the neutron beam. The cryostat is emptied of air to avoid signal noise from air.

Credit: Johan Jacobsen, Niels Bohr Institute
The IRIS instrument is viewed from above. The cement sample is lowered about 120 cm into a cryostat so that it is hit by the neutron beam. The cryostat is emptied of air to avoid signal noise from air.

Credit: Johan Jacobsen, Niels Bohr Institute

Abstract:
New research from the Niels Bohr Institute shows that cement made with waste ash from sugar production is stronger than ordinary cement. The research shows that the ash helps to bind water in the cement so that it is stronger, can withstand higher pressure and crumbles less. At the same time, energy is saved and pollution from cement production is reduced. The results are published in the scientific journal, Scientific Reports.

Environmentally friendly cement is stronger than ordinary cement

Copenhagen, Denmark | Posted on September 16th, 2013

Cement is comprised of chalk and clay, which are mixed together and heated at high temperatures in a cement kiln. The mixture is then crushed into a powder. When the cement powder is mixed with water a chemical process takes place, which causes the cement mixture to harden. Cement is used as a building material throughout the world.

In some countries where sugar cane is grown, agricultural waste product from sugar production has been added to the cement mixture for many years. Once the sugar has been extracted from the sugar can you are left with a lot of fibre waste, which is used as fuel for energy production. From the energy production you get a lot of ash, which needs to be disposed of. In some countries, like Cuba and Brazil, the ash is added into cement mixtures.

"I have been studying cement using quasi-elastic neutron scattering for several years and researchers from Brazil asked whether I wanted to analyse samples of cement mixed with waste products in the form of sugar cane ash. I decided to say yes to the project, which aimed to investigate the properties on a nano-scale and map the mobility of water in the cement. The quality and strength of cement is directly related to how much of the water is chemically bonded. The more the water can move around, the worse it is for the strength and durability," explains Heloisa Bordallo, who does research in nanophysics at the Niels Bohr Institute at the University of Copenhagen.

Neutron scattering reveals water

Heloisa Bordallo was sent a number of cement samples from Brazil. The samples contained varying amounts of ash from sugar can production. Their innermost dynamics were then examined. This took place at the ISIS facility in the UK. The samples were placed in an instrument where they were bombarded by neutrons.

"Using neutron scattering, we can see how the water inside the sample moves. Neutrons are shot into the sample and when neutrons hit the water's hydrogen atoms, they interact and the neutrons scatter and are picked up by the detectors. We repeat this for several hours and by analysing the data we can determine how the water inside the sample is moving and also determine its local environment," explains Johan Jacobsen, who performed the experiments as part of his thesis for the graduate programme in physics at the Niels Bohr Institute.

The experiments showed that the cement mixed with approx. 20 percent ash had good properties. The water the cement pores was bound to the ash and moved around less. This explains why the ash cement is stronger, can withstand higher pressure and will crumble less.

Potential for environmentally friendly ash cement

Cement typically takes a week to solidify. After one month, 70 percent of the process has been completed, but the process continues for many years. Ordinary cement is generally stronger during the first few months than the ash cement, but after a year the ash cement is stronger than the ordinary cement.

Ash cement has been used for many years, but only locally. Now it could have great potential.

"The cement industry is huge and if they are to adopt a new idea, they need to have proof that it works. Using quasi-elastic neutron scattering we have now studied cement mixed with ash and shown what is happening and why it is stronger. Cement production uses a lot of energy and emits large amounts of CO2, because it needs to be heated up to very high temperatures. Cement production accounts for 5 percent of global CO2 emissions. If you replace 20 percent of the content with ash, you are saving both CO2 emissions and raw materials, as you use 20 percent less by utilizing a waste product like ash," says Heloisa Bordallo.

####

For more information, please click here

Contacts:
Gertie Skaarup

45-35-32-53-20

Heloisa N. Bordallo
Associate Professor
Niels Bohr Institute
University of Copenhagen
+45 2130-8829

http://www.nbi.ku.dk/english/

Copyright © University of Copenhagen - Niels Bohr Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article in Scientific Reports:

Related News Press

News and information

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Discoveries

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Materials/Metamaterials

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Announcements

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Tools

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosunís ALD solutions make quality watches tick July 26th, 2018

Nanometrics Announces Participation in Upcoming Investor Conferences July 25th, 2018

Environment

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Construction

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project