Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn scientists demonstrate new method for harvesting energy from light

Researchers fabricated nanostructures with various photoconduction properties.
Researchers fabricated nanostructures with various photoconduction properties.

Abstract:
Researchers from the University of Pennsylvania have demonstrated a new mechanism for extracting energy from light, a finding that could improve technologies for generating electricity from solar energy and lead to more efficient optoelectronic devices used in communications.

Penn scientists demonstrate new method for harvesting energy from light

Philadelphia, PA | Posted on September 9th, 2013

Dawn Bonnell, Penn's vice provost for research and Trustee Professor of Materials Science and Engineering in the School of Engineering and Applied Science, led the work, along with David Conklin, a doctoral student. The study involved a collaboration among additional Penn researchers, through the Nano/Bio Interface Center, as well as a partnership with the lab of Michael J. Therien of Duke University.

"We're excited to have found a process that is much more efficient than conventional photoconduction," Bonnell said. "Using such an approach could make solar energy harvesting and optoelectronic devices much better."

The study was published in the journal ACS Nano and will be discussed at a press conference at the American Chemical Society National Meeting and Exhibition in Indianapolis today at 10:30 a.m. (EDT).

The new work centers on plasmonic nanostructures, specifically, materials fabricated from gold particles and light-sensitive molecules of porphyin, of precise sizes and arranged in specific patterns. Plasmons, or a collective oscillation of electrons, can be excited in these systems by optical radiation and induce an electrical current that can move in a pattern determined by the size and layout of the gold particles, as well as the electrical properties of the surrounding environment.

Because these materials can enhance the scattering of light, they have the potential to be used to advantage in a range of technological applications, such as increasing absorption in solar cells.

In 2010, Bonnell and colleagues published a paper in ACS Nano reporting the fabrication of a plasmonic nanostructure, which induced and projected an electrical current across molecules. In some cases they designed the material, an array of gold nanoparticles, using a technique Bonnell's group invented, known as ferroelectric nanolithography.

The discovery was potentially powerful, but the scientists couldn't prove that the improved transduction of optical radiation to an electrical current was due to the "hot electrons" produced by the excited plasmons. Other possibilities included that the porphyin molecule itself was excited or that the electric field could focus the incoming light.

"We hypothesized that, when plasmons are excited to a high energy state, we should be able to harvest the electrons out of the material," Bonnell said. "If we could do that, we could use them for molecular electronics device applications, such as circuit components or solar energy extraction."

To examine the mechanism of the plasmon-induced current, the researchers systematically varied the different components of the plasmonic nanostructure, changing the size of the gold nanoparticles, the size of the porphyin molecules and the spacing of those components. They designed specific structures that ruled out the other possibilities so that the only contribution to enhanced photocurrent could be from the hot electrons harvested from the plasmons.

"In our measurements, compared to conventional photoexcitation, we saw increases of three to 10 times in the efficiency of our process," Bonnell said. "And we didn't even optimize the system. In principle you can envision huge increases in efficiency."

Devices incorporating this process of harvesting plasmon-induced hot electrons could be customized for different applications by changing the size and spacing of nanoparticles, which would alter the wavelength of light to which the plasmon responds.

"You could imagine having a paint on your laptop that acted like a solar cell to power it using only sunlight," Bonnell said. "These materials could also improve communications devices, becoming part of efficient molecular circuits."

The Penn team included Bonnell, Conklin, Sanjini Nanayakkara and Xi Chen from Engineering's Department of Materials Science and Engineering and Tae-Hong Park from the School of Arts and Sciences' Department of Chemistry. Other coauthors included Marie F. Lagadec from ETH Zurich and Therien and Joshua T. Stecher of Duke.

The research was supported by the U.S. Department of Energy and the National Science Foundation.

####

For more information, please click here

Contacts:
Katherine Unger Baillie

215-898-9194

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Energy

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Photonics/Optics/Lasers

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Solar/Photovoltaic

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Printing/Lithography/Inkjet/Inks

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

Leti and EVG Launch INSPIRE, a Lithography Program Aimed At Demonstrating Benefits of Nano-imprint Technology July 15th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project