Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Penn scientists demonstrate new method for harvesting energy from light

Researchers fabricated nanostructures with various photoconduction properties.
Researchers fabricated nanostructures with various photoconduction properties.

Abstract:
Researchers from the University of Pennsylvania have demonstrated a new mechanism for extracting energy from light, a finding that could improve technologies for generating electricity from solar energy and lead to more efficient optoelectronic devices used in communications.

Penn scientists demonstrate new method for harvesting energy from light

Philadelphia, PA | Posted on September 9th, 2013

Dawn Bonnell, Penn's vice provost for research and Trustee Professor of Materials Science and Engineering in the School of Engineering and Applied Science, led the work, along with David Conklin, a doctoral student. The study involved a collaboration among additional Penn researchers, through the Nano/Bio Interface Center, as well as a partnership with the lab of Michael J. Therien of Duke University.

"We're excited to have found a process that is much more efficient than conventional photoconduction," Bonnell said. "Using such an approach could make solar energy harvesting and optoelectronic devices much better."

The study was published in the journal ACS Nano and will be discussed at a press conference at the American Chemical Society National Meeting and Exhibition in Indianapolis today at 10:30 a.m. (EDT).

The new work centers on plasmonic nanostructures, specifically, materials fabricated from gold particles and light-sensitive molecules of porphyin, of precise sizes and arranged in specific patterns. Plasmons, or a collective oscillation of electrons, can be excited in these systems by optical radiation and induce an electrical current that can move in a pattern determined by the size and layout of the gold particles, as well as the electrical properties of the surrounding environment.

Because these materials can enhance the scattering of light, they have the potential to be used to advantage in a range of technological applications, such as increasing absorption in solar cells.

In 2010, Bonnell and colleagues published a paper in ACS Nano reporting the fabrication of a plasmonic nanostructure, which induced and projected an electrical current across molecules. In some cases they designed the material, an array of gold nanoparticles, using a technique Bonnell's group invented, known as ferroelectric nanolithography.

The discovery was potentially powerful, but the scientists couldn't prove that the improved transduction of optical radiation to an electrical current was due to the "hot electrons" produced by the excited plasmons. Other possibilities included that the porphyin molecule itself was excited or that the electric field could focus the incoming light.

"We hypothesized that, when plasmons are excited to a high energy state, we should be able to harvest the electrons out of the material," Bonnell said. "If we could do that, we could use them for molecular electronics device applications, such as circuit components or solar energy extraction."

To examine the mechanism of the plasmon-induced current, the researchers systematically varied the different components of the plasmonic nanostructure, changing the size of the gold nanoparticles, the size of the porphyin molecules and the spacing of those components. They designed specific structures that ruled out the other possibilities so that the only contribution to enhanced photocurrent could be from the hot electrons harvested from the plasmons.

"In our measurements, compared to conventional photoexcitation, we saw increases of three to 10 times in the efficiency of our process," Bonnell said. "And we didn't even optimize the system. In principle you can envision huge increases in efficiency."

Devices incorporating this process of harvesting plasmon-induced hot electrons could be customized for different applications by changing the size and spacing of nanoparticles, which would alter the wavelength of light to which the plasmon responds.

"You could imagine having a paint on your laptop that acted like a solar cell to power it using only sunlight," Bonnell said. "These materials could also improve communications devices, becoming part of efficient molecular circuits."

The Penn team included Bonnell, Conklin, Sanjini Nanayakkara and Xi Chen from Engineering's Department of Materials Science and Engineering and Tae-Hong Park from the School of Arts and Sciences' Department of Chemistry. Other coauthors included Marie F. Lagadec from ETH Zurich and Therien and Joshua T. Stecher of Duke.

The research was supported by the U.S. Department of Energy and the National Science Foundation.

####

For more information, please click here

Contacts:
Katherine Unger Baillie

215-898-9194

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Photonics/Optics/Lasers

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

Research partnerships

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project