Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stabilization of Titanium Oxide Nanoparticles in Aqueous Beds

Abstract:
Material engineering researchers in Iran produced a suspension with colloidal stability of over 60 days in aqueous beds by using a novel method.

Stabilization of Titanium Oxide Nanoparticles in Aqueous Beds

Tehran, Iran | Posted on September 9th, 2013

The achievement was obtained to modify ceramic nanoparticles by using polymeric compounds to be loaded by folic acid and anti-cancer drugs.

Results of the research showed that a narrow range of nanoparticles meshing could be obtained. Results also demonstrated that a suspension with colloidal stability of more than 60 days with narrow meshing and single-phase anatase could be produced by preparing the cell containing nanoparticles and polymeric materials and by carrying out the hydrothermal operation.

Sedimentation of nanoparticles is the biggest problem that challenges all applications of such materials. The direct biological application of these materials was the main objective in this research. The instability of nanoparticles results in the sedimentation of the particles in the tissue of the living creatures, and it disturbs drug delivery process. The production of ceramic pigments, the stabilization of the cell required for nanostructured coatings, and so on, are among other issues that are directly related to the colloidal stability of nanoparticles.

Among the characteristics of the plan, mention can be made of increasing the stability of nanoparticles up to more than two months, the use of dextran, and coating of nanoparticles before the thermal operation.

According to Naqibi, one of the researchers of the plan, it has the potential to be commercialized in the fields of the production of self-cleaning paints and the production of drug carriers at larger scales. According to him, the future of the research depends on increasing the crystalliniy of nanoparticles while the colloidal stability is conserved, and also on the stabilization of commercial nanoparticles.

Results of the research have been published in September 2013 in Ceramics International, vol. 39, issue 7, pp. 8377-8384.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Discoveries

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Materials/Metamaterials

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic